Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 24004x 24004x 24004x 24004x 1x 1x 24004x 2x 2x 24004x 3x 3x 23998x 24004x 1x 1x 1x 1x 1x | /** * @license Apache-2.0 * * Copyright (c) 2025 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var sinpif = require( '@stdlib/math/base/special/sinpif' ); var isnanf = require( '@stdlib/math/base/assert/is-nanf' ); var isInfinitef = require( '@stdlib/math/base/assert/is-infinitef' ); var f32 = require( '@stdlib/number/float64/base/to-float32' ); var PI = require( '@stdlib/constants/float32/pi' ); // VARIABLES // var ONE = f32( 1.0 ); var ZERO = f32( 0.0 ); // MAIN // /** * Computes the normalized cardinal sine of a single-precision floating-point number (in radians). * * ## Method * * For \\( x \neq 0 \\), the normalized cardinal sine is calculated as * * ```tex * \operatorname{sinc}(x) = \frac{\operatorname{sin}(\pi x)}{\pi x}. * ``` * * ## Special Cases * * ```tex * \begin{align*} * \operatorname{sinc}(0) &= 1 & \\ * \operatorname{sinc}(\infty) &= 0 & \\ * \operatorname{sinc}(-\infty) &= 0 & \\ * \operatorname{sinc}(\mathrm{NaN}) &= \mathrm{NaN} * \end{align*} * ``` * * @param {number} x - input value * @returns {number} cardinal sine * * @example * var v = sincf( 0.5 ); * // returns ~0.637 * * @example * var v = sincf( -1.2 ); * // returns ~-0.156 * * @example * var v = sincf( 0.0 ); * // returns 1.0 * * @example * var v = sincf( NaN ); * // returns NaN */ function sincf( x ) { x = f32( x ); if ( isnanf( x ) ) { return NaN; } if ( isInfinitef( x ) ) { return ZERO; } if ( x === ZERO ) { return ONE; } return f32( sinpif( x ) / f32( PI*x ) ); } // EXPORTS // module.exports = sincf; |