Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 24004x 24004x 24004x 24004x 1x 1x 24004x 2x 2x 24004x 3x 3x 23998x 24004x 1x 1x 1x 1x 1x | /**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var sinpif = require( '@stdlib/math/base/special/sinpif' );
var isnanf = require( '@stdlib/math/base/assert/is-nanf' );
var isInfinitef = require( '@stdlib/math/base/assert/is-infinitef' );
var f32 = require( '@stdlib/number/float64/base/to-float32' );
var PI = require( '@stdlib/constants/float32/pi' );
// VARIABLES //
var ONE = f32( 1.0 );
var ZERO = f32( 0.0 );
// MAIN //
/**
* Computes the normalized cardinal sine of a single-precision floating-point number (in radians).
*
* ## Method
*
* For \\( x \neq 0 \\), the normalized cardinal sine is calculated as
*
* ```tex
* \operatorname{sinc}(x) = \frac{\operatorname{sin}(\pi x)}{\pi x}.
* ```
*
* ## Special Cases
*
* ```tex
* \begin{align*}
* \operatorname{sinc}(0) &= 1 & \\
* \operatorname{sinc}(\infty) &= 0 & \\
* \operatorname{sinc}(-\infty) &= 0 & \\
* \operatorname{sinc}(\mathrm{NaN}) &= \mathrm{NaN}
* \end{align*}
* ```
*
* @param {number} x - input value
* @returns {number} cardinal sine
*
* @example
* var v = sincf( 0.5 );
* // returns ~0.637
*
* @example
* var v = sincf( -1.2 );
* // returns ~-0.156
*
* @example
* var v = sincf( 0.0 );
* // returns 1.0
*
* @example
* var v = sincf( NaN );
* // returns NaN
*/
function sincf( x ) {
x = f32( x );
if ( isnanf( x ) ) {
return NaN;
}
if ( isInfinitef( x ) ) {
return ZERO;
}
if ( x === ZERO ) {
return ONE;
}
return f32( sinpif( x ) / f32( PI*x ) );
}
// EXPORTS //
module.exports = sincf;
|