Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 | 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 13x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1150x 1x 1x 1149x 1150x 1150x 392x 392x 392x 392x 392x 392x 1149x 1150x 4x 4x 2x 2x 2x 2x 1145x 1145x 1145x 1145x 7945x 7945x 7945x 7945x 7945x 7945x 7945x 4042x 4042x 7945x 1145x 1145x 1x 1x 1144x 1144x 4x 4x 2x 2x 2x 2x 1140x 1140x 1140x 1140x 80x 80x 300x 80x 80x 300x 80x 80x 80x 28x 28x 80x 12x 12x 40x 40x 1060x 1060x 1060x 1140x 450x 450x 450x 450x 450x 136x 136x 68x 68x 68x 68x 136x 136x 136x 136x 56x 56x 136x 80x 80x 314x 314x 314x 434x 32x 32x 32x 24x 24x 8x 8x 450x 450x 892x 892x 892x 1076x 56x 56x 28x 28x 28x 28x 836x 1020x 252x 252x 1020x 324x 324x 260x 1150x 13x 13x 13x 13x 13x | /** * @license Apache-2.0 * * Copyright (c) 2025 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isComplexArray = require( '@stdlib/array/base/assert/is-complex-typed-array' ); var isBooleanArray = require( '@stdlib/array/base/assert/is-booleanarray' ); var iterationOrder = require( '@stdlib/ndarray/base/iteration-order' ); var minmaxViewBufferIndex = require( '@stdlib/ndarray/base/minmax-view-buffer-index' ); var ndarray2object = require( '@stdlib/ndarray/base/ndarraylike2object' ); var reinterpretComplex = require( '@stdlib/strided/base/reinterpret-complex' ); var reinterpretBoolean = require( '@stdlib/strided/base/reinterpret-boolean' ); var gscal = require( '@stdlib/blas/base/gscal' ); var blockedaccessorsome2d = require( './2d_blocked_accessors.js' ); var blockedaccessorsome3d = require( './3d_blocked_accessors.js' ); var blockedcomplexsome2d = require( './2d_blocked_complex.js' ); var blockedcomplexsome3d = require( './3d_blocked_complex.js' ); var blockedsome2d = require( './2d_blocked.js' ); var blockedsome3d = require( './3d_blocked.js' ); var accessorsome0d = require( './0d_accessors.js' ); var accessorsome1d = require( './1d_accessors.js' ); var accessorsome2d = require( './2d_accessors.js' ); var accessorsome3d = require( './3d_accessors.js' ); var accessorsomend = require( './nd_accessors.js' ); var complexsome0d = require( './0d_complex.js' ); var complexsome1d = require( './1d_complex.js' ); var complexsome2d = require( './2d_complex.js' ); var complexsome3d = require( './3d_complex.js' ); var complexsomend = require( './nd_complex.js' ); var some0d = require( './0d.js' ); var some1d = require( './1d.js' ); var some2d = require( './2d.js' ); var some3d = require( './3d.js' ); var somend = require( './nd.js' ); // VARIABLES // var SOME = [ some0d, some1d, some2d, some3d ]; var ACCESSOR_SOME = [ accessorsome0d, accessorsome1d, accessorsome2d, accessorsome3d ]; var COMPLEX_SOME = [ complexsome0d, complexsome1d, complexsome2d, complexsome3d ]; var BLOCKED_SOME = [ blockedsome2d, // 0 blockedsome3d ]; var BLOCKED_ACCESSOR_SOME = [ blockedaccessorsome2d, // 0 blockedaccessorsome3d ]; var BLOCKED_COMPLEX_SOME = [ blockedcomplexsome2d, // 0 blockedcomplexsome3d ]; var MAX_DIMS = SOME.length - 1; // MAIN // /** * Tests whether at least `n` elements in an ndarray are truthy. * * ## Notes * * - A provided ndarray should be an `object` with the following properties: * * - **dtype**: data type. * - **data**: data buffer. * - **shape**: dimensions. * - **strides**: stride lengths. * - **offset**: index offset. * - **order**: specifies whether an ndarray is row-major (C-style) or column major (Fortran-style). * * @param {ArrayLikeObject<Object>} arrays - array-like object containing an input ndarray and a zero-dimensional ndarray specifying the minimum number of elements in the input ndarray that must satisfy the predicate function * @returns {boolean} boolean indicating whether at least `n` elements are truthy * * @example * var scalar2ndarray = require( '@stdlib/ndarray/from-scalar' ); * var Float64Array = require( '@stdlib/array/float64' ); * * // Create a data buffer: * var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 0.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] ); * * // Define the shape of the input array: * var shape = [ 3, 1, 2 ]; * * // Define the array strides: * var sx = [ 4, 4, 1 ]; * * // Define the index offset: * var ox = 1; * * // Create the input ndarray-like object: * var x = { * 'dtype': 'float64', * 'data': xbuf, * 'shape': shape, * 'strides': sx, * 'offset': ox, * 'order': 'row-major' * }; * * // Define the success criterion: * var n = scalar2ndarray( 3, { * 'dtype': 'generic' * }); * * // Test elements: * var out = some( [ x, n ] ); * // returns true */ function some( arrays ) { var isCmplx; var ndims; var xmmv; var shx; var iox; var len; var sx; var ox; var ns; var N; var x; var n; var d; var i; // Unpack the ndarray and standardize ndarray meta data: x = ndarray2object( arrays[ 0 ] ); n = ndarray2object( arrays[ 1 ] ); shx = x.shape; ndims = shx.length; // Resolve the success criterion: N = n.accessors[ 0 ]( n.data, n.offset ); if ( N < 1 ) { return true; } // Check for known array types which can be reinterpreted for better iteration performance... if ( isBooleanArray( x.data ) ) { x.data = reinterpretBoolean( x.data, 0 ); x.accessorProtocol = false; } else if ( isComplexArray( x.data ) ) { x.data = reinterpretComplex( x.data, 0 ); x.accessorProtocol = false; x.strides = gscal( ndims, 2, x.strides, 1 ); x.offset *= 2; isCmplx = true; } // Determine whether we can avoid iteration altogether... if ( ndims === 0 ) { if ( x.accessorProtocol ) { return ACCESSOR_SOME[ ndims ]( x, N ); } if ( isCmplx ) { return COMPLEX_SOME[ ndims ]( x, N ); } return SOME[ ndims ]( x, N ); } // Compute the number of elements and the number of singleton dimensions... len = 1; // number of elements ns = 0; // number of singleton dimensions for ( i = 0; i < ndims; i++ ) { d = shx[ i ]; // Note that, if one of the dimensions is `0`, the length will be `0`... len *= d; // Check whether the current dimension is a singleton dimension... if ( d === 1 ) { ns += 1; } } // Check whether we were provided an empty ndarray... if ( len === 0 ) { return false; } // Determine whether the ndarray is one-dimensional and thus readily translates to a one-dimensional strided array... if ( ndims === 1 ) { if ( x.accessorProtocol ) { return ACCESSOR_SOME[ ndims ]( x, N ); } if ( isCmplx ) { return COMPLEX_SOME[ ndims ]( x, N ); } return SOME[ ndims ]( x, N ); } sx = x.strides; // Determine whether the ndarray has only **one** non-singleton dimension (e.g., ndims=4, shape=[10,1,1,1]) so that we can treat an ndarray as being equivalent to a one-dimensional strided array... if ( ns === ndims-1 ) { // Get the index of the non-singleton dimension... for ( i = 0; i < ndims; i++ ) { if ( shx[ i ] !== 1 ) { break; } } x.shape = [ shx[i] ]; x.strides = [ sx[i] ]; if ( x.accessorProtocol ) { return ACCESSOR_SOME[ 1 ]( x, N ); } if ( isCmplx ) { return COMPLEX_SOME[ 1 ]( x, N ); } return SOME[ 1 ]( x, N ); } iox = iterationOrder( sx ); // +/-1 // Determine whether we can avoid blocked iteration... if ( iox !== 0 ) { // Determine the minimum and maximum linear indices which are accessible by the array view: xmmv = minmaxViewBufferIndex( shx, sx, x.offset ); // Determine whether we can ignore shape (and strides) and treat the ndarray as a linear one-dimensional strided array... if ( len === ( xmmv[1]-xmmv[0]+1 ) || ( isCmplx && len*2 === ( xmmv[1]-xmmv[0]+1 ) ) ) { // eslint-disable-line max-len // Note: the above is equivalent to @stdlib/ndarray/base/assert/is-contiguous, but in-lined so we can retain computed values... if ( iox === 1 ) { ox = xmmv[ 0 ]; } else { ox = xmmv[ 1 ]; } x.shape = [ len ]; x.strides = [ ( isCmplx ) ? iox*2 : iox ]; x.offset = ox; if ( x.accessorProtocol ) { return ACCESSOR_SOME[ 1 ]( x, N ); } if ( isCmplx ) { return COMPLEX_SOME[ 1 ]( x, N ); } return SOME[ 1 ]( x, N ); } // The ndarray is non-contiguous, so we cannot directly use one-dimensional array functionality... // Determine whether we can use simple nested loops... if ( ndims <= MAX_DIMS ) { // So long as iteration always moves in the same direction (i.e., no mixed sign strides), we can leverage cache-optimal (i.e., normal) nested loops without resorting to blocked iteration... if ( x.accessorProtocol ) { return ACCESSOR_SOME[ ndims ]( x, N ); } if ( isCmplx ) { return COMPLEX_SOME[ ndims ]( x, N ); } return SOME[ ndims ]( x, N ); } // Fall-through to blocked iteration... } // At this point, we're either dealing with a non-contiguous n-dimensional array or a high dimensional n-dimensional array, so our only hope is that we can still perform blocked iteration... // Determine whether we can perform blocked iteration... if ( ndims <= MAX_DIMS ) { if ( x.accessorProtocol ) { return BLOCKED_ACCESSOR_SOME[ ndims-2 ]( x, N ); } if ( isCmplx ) { return BLOCKED_COMPLEX_SOME[ ndims-2 ]( x, N ); } return BLOCKED_SOME[ ndims-2 ]( x, N ); } // Fall-through to linear view iteration without regard for how data is stored in memory (i.e., take the slow path)... if ( x.accessorProtocol ) { return accessorsomend( x, N ); } if ( isCmplx ) { return complexsomend( x, N ); } return somend( x, N ); } // EXPORTS // module.exports = some; |