Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 44x 44x 4x 4x 40x 40x 44x 2x 2x 2x 2x 2x | /** * @license Apache-2.0 * * Copyright (c) 2025 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var format = require( '@stdlib/string/format' ); var base = require( './base.js' ); // MAIN // /** * Computes the scalar multiple of the first column of `K` where `K = (H - Z1)*(H - Z2)` for a 2-by-2 or a 3-by-3 matrix `H` using alternative indexing semantics and where `Z1 = z1*I`, `Z2 = z2*I`, `z1 = a + bi`, `z2 = c + di`, and `I` is the identity matrix. * * ## Notes * * - It is expected that either `sr1 = sr2` and `si1 + si2 = 0` or `si1 = si2 = 0` (i.e., they represent complex conjugate values). * - This is useful for starting double implicit shift bulges in the QR algorithm. * - `V` should have at least `N` indexed elements. * * @param {PositiveInteger} N - number of row/columns in `H` * @param {Float64Array} H - input matrix * @param {integer} strideH1 - stride of the first dimension of `H` * @param {integer} strideH2 - stride of the second dimension of `H` * @param {NonNegativeInteger} offsetH - index offset for `H` * @param {number} sr1 - real part of the first conjugate complex shift * @param {number} si1 - imaginary part of the first conjugate complex shift * @param {number} sr2 - real part of the second conjugate complex shift * @param {number} si2 - imaginary part of the second conjugate complex shift * @param {Float64Array} V - output array * @param {integer} strideV - stride length for `V` * @param {NonNegativeInteger} offsetV - index offset for `V` * @throws {RangeError} first argument must be either 2 or 3 * @returns {Float64Array} `V` * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var H = new Float64Array( [ 1.0, 3.0, 2.0, 2.0, 4.0, 6.0, 0.0, 5.0, 7.0 ] ); // => [ [ 1.0, 3.0, 2.0 ], [ 2.0, 4.0, 6.0 ], [ 0.0, 5.0, 7.0 ] ] * var V = new Float64Array( 3 ); * * var out = dlaqr1( 3, H, 3, 1, 0, 1.5, 0.0, 2.5, 0.0, V, 1, 0 ); * // returns <Float64Array>[ ~1.93, ~0.57, ~2.86 ] */ function dlaqr1( N, H, strideH1, strideH2, offsetH, sr1, si1, sr2, si2, V, strideV, offsetV ) { // eslint-disable-line max-len, max-params if ( N !== 2 && N !== 3 ) { throw new RangeError( format( 'invalid argument. First argument must be either %d or %d. Value: `%d`.', 2, 3, N ) ); } return base( N, H, strideH1, strideH2, offsetH, sr1, si1, sr2, si2, V, strideV, offsetV ); // eslint-disable-line max-len } // EXPORTS // module.exports = dlaqr1; |