All files / lapack/base/dlanv2/lib ndarray.js

100% Statements 118/118
100% Branches 2/2
100% Functions 1/1
100% Lines 118/118

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 1192x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 16x 16x 16x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var base = require( './base.js' );
 
 
// MAIN //
 
/**
* Computes the Schur factorization of a real 2-by-2 nonsymmetric matrix `A` in standard form using alternative indexing semantics.
*
* Given a real 2×2 matrix:
*
* ```tex
* \begin{bmatrix}
* A & B \\
* C & D
* \end{bmatrix}
* ```
*
* this routine computes an orthogonal matrix:
*
* ```tex
* \begin{bmatrix}
* \text{CS} & \text{SN} \\
* -\text{SN} & \text{CS}
* \end{bmatrix}
* ```
*
* such that the matrix is reduced to Schur (quasi-triangular) form:
*
* ```tex
* \begin{bmatrix}
* \text{AA} & \text{BB} \\
* \text{CC} & \text{DD}
* \end{bmatrix}
* ```
*
* where either:
*
* -   `CC` = 0, `AA` and `DD` are the real eigenvalues of the matrix.
* -   `AA` = `DD` and `BB * CC` < 0, `AA + sqrt( BB * CC )` and `AA - sqrt( BB * CC )` are the complex conjugate eigenvalues.
*
* @param {Float64Array} A - array containing the element A(1,1)
* @param {NonNegativeInteger} offsetA - index in `A` of the element A(1,1)
* @param {Float64Array} B - array containing the element A(1,2)
* @param {NonNegativeInteger} offsetB - index in `B` of the element A(1,2)
* @param {Float64Array} C - array containing the element A(2,1)
* @param {NonNegativeInteger} offsetC - index in `C` of the element A(2,1)
* @param {Float64Array} D - array containing the element A(2,2)
* @param {NonNegativeInteger} offsetD - index in `D` of the element A(2,2)
* @param {Float64Array} RT1R - output array for the real part of the first eigenvalue
* @param {NonNegativeInteger} offsetRT1R - index in `RT1R` at which to store the value
* @param {Float64Array} RT1I - output array for the imaginary part of the first eigenvalue
* @param {NonNegativeInteger} offsetRT1I - index in `RT1I` at which to store the value
* @param {Float64Array} RT2R - output array for the real part of the second eigenvalue
* @param {NonNegativeInteger} offsetRT2R - index in `RT2R` at which to store the value
* @param {Float64Array} RT2I - output array for the imaginary part of the second eigenvalue
* @param {NonNegativeInteger} offsetRT2I - index in `RT2I` at which to store the value
* @param {Float64Array} CS - output array for cosine of the rotation
* @param {NonNegativeInteger} offsetCS - index in `CS` at which to store the value
* @param {Float64Array} SN - output array for sine of the rotation
* @param {NonNegativeInteger} offsetSN - index in `SN` at which to store the value
* @returns {void}
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var A = new Float64Array( [ 4.0 ] );
* var B = new Float64Array( [ -5.0 ] );
* var C = new Float64Array( [ 2.0 ] );
* var D = new Float64Array( [ -3.0 ] );
* var RT1R = new Float64Array( 1 );
* var RT1I = new Float64Array( 1 );
* var RT2R = new Float64Array( 1 );
* var RT2I = new Float64Array( 1 );
* var CS = new Float64Array( 1 );
* var SN = new Float64Array( 1 );
*
* dlanv2( A, 0, B, 0, C, 0, D, 0, RT1R, 0, RT1I, 0, RT2R, 0, RT2I, 0, CS, 0, SN, 0 );
* // A => <Float64Array>[ 2.0 ]
* // B => <Float64Array>[ -7.0 ]
* // C => <Float64Array>[ 0.0 ]
* // D => <Float64Array>[ -1.0 ]
* // RT1R => <Float64Array>[ 2.0 ]
* // RT1I => <Float64Array>[ 0.0 ]
* // RT2R => <Float64Array>[ -1.0 ]
* // RT2I => <Float64Array>[ 0.0 ]
* // CS => <Float64Array>[ ~0.93 ]
* // SN => <Float64Array>[ ~0.34 ]
*/
function dlanv2( A, offsetA, B, offsetB, C, offsetC, D, offsetD, RT1R, offsetRT1R, RT1I, offsetRT1I, RT2R, offsetRT2R, RT2I, offsetRT2I, CS, offsetCS, SN, offsetSN ) { // eslint-disable-line max-len, max-params
	return base( A, offsetA, B, offsetB, C, offsetC, D, offsetD, RT1R, offsetRT1R, RT1I, offsetRT1I, RT2R, offsetRT2R, RT2I, offsetRT2I, CS, offsetCS, SN, offsetSN ); // eslint-disable-line max-len
}
 
 
// EXPORTS //
 
module.exports = dlanv2;