All files / lapack/base/dlanv2/lib dlanv2.js

100% Statements 108/108
100% Branches 2/2
100% Functions 1/1
100% Lines 108/108

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 1092x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 8x 8x 8x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var base = require( './base.js' );
 
 
// MAIN //
 
/**
* Computes the Schur factorization of a real 2-by-2 nonsymmetric matrix `A` in standard form.
*
* Given a real 2×2 matrix:
*
* ```tex
* \begin{bmatrix}
* A & B \\
* C & D
* \end{bmatrix}
* ```
*
* this routine computes an orthogonal matrix:
*
* ```tex
* \begin{bmatrix}
* \text{CS} & \text{SN} \\
* -\text{SN} & \text{CS}
* \end{bmatrix}
* ```
*
* such that the matrix is reduced to Schur (quasi-triangular) form:
*
* ```tex
* \begin{bmatrix}
* \text{AA} & \text{BB} \\
* \text{CC} & \text{DD}
* \end{bmatrix}
* ```
*
* where either:
*
* -   `CC` = 0, `AA` and `DD` are the real eigenvalues of the matrix.
* -   `AA` = `DD` and `BB * CC` < 0, `AA + sqrt( BB * CC )` and `AA - sqrt( BB * CC )` are the complex conjugate eigenvalues.
*
* @param {Float64Array} A - array containing the element A(1,1)
* @param {Float64Array} B - array containing the element A(1,2)
* @param {Float64Array} C - array containing the element A(2,1)
* @param {Float64Array} D - array containing the element A(2,2)
* @param {Float64Array} RT1R - output array for the real part of the first eigenvalue
* @param {Float64Array} RT1I - output array for the imaginary part of the first eigenvalue
* @param {Float64Array} RT2R - output array for the real part of the second eigenvalue
* @param {Float64Array} RT2I - output array for the imaginary part of the second eigenvalue
* @param {Float64Array} CS - output array for cosine of the rotation
* @param {Float64Array} SN - output array for sine of the rotation
* @returns {void}
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var A = new Float64Array( [ 4.0 ] );
* var B = new Float64Array( [ -5.0 ] );
* var C = new Float64Array( [ 2.0 ] );
* var D = new Float64Array( [ -3.0 ] );
* var RT1R = new Float64Array( 1 );
* var RT1I = new Float64Array( 1 );
* var RT2R = new Float64Array( 1 );
* var RT2I = new Float64Array( 1 );
* var CS = new Float64Array( 1 );
* var SN = new Float64Array( 1 );
*
* dlanv2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN );
* // A => <Float64Array>[ 2.0 ]
* // B => <Float64Array>[ -7.0 ]
* // C => <Float64Array>[ 0.0 ]
* // D => <Float64Array>[ -1.0 ]
* // RT1R => <Float64Array>[ 2.0 ]
* // RT1I => <Float64Array>[ 0.0 ]
* // RT2R => <Float64Array>[ -1.0 ]
* // RT2I => <Float64Array>[ 0.0 ]
* // CS => <Float64Array>[ ~0.93 ]
* // SN => <Float64Array>[ ~0.34 ]
*/
function dlanv2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN ) {
	return base( A, 0, B, 0, C, 0, D, 0, RT1R, 0, RT1I, 0, RT2R, 0, RT2I, 0, CS, 0, SN, 0 ); // eslint-disable-line max-len
}
 
 
// EXPORTS //
 
module.exports = dlanv2;