Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 8x 8x 8x 2x 2x 2x 2x 2x | /** * @license Apache-2.0 * * Copyright (c) 2025 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var base = require( './base.js' ); // MAIN // /** * Computes the Schur factorization of a real 2-by-2 nonsymmetric matrix `A` in standard form. * * Given a real 2×2 matrix: * * ```tex * \begin{bmatrix} * A & B \\ * C & D * \end{bmatrix} * ``` * * this routine computes an orthogonal matrix: * * ```tex * \begin{bmatrix} * \text{CS} & \text{SN} \\ * -\text{SN} & \text{CS} * \end{bmatrix} * ``` * * such that the matrix is reduced to Schur (quasi-triangular) form: * * ```tex * \begin{bmatrix} * \text{AA} & \text{BB} \\ * 0 & \text{DD} * \end{bmatrix} * ``` * * @param {Float64Array} A - array containing the element A(1,1) * @param {Float64Array} B - array containing the element A(1,2) * @param {Float64Array} C - array containing the element A(2,1) * @param {Float64Array} D - array containing the element A(2,2) * @param {Float64Array} RT1R - output array for the real part of the first eigenvalue * @param {Float64Array} RT1I - output array for the imaginary part of the first eigenvalue * @param {Float64Array} RT2R - output array for the real part of the second eigenvalue * @param {Float64Array} RT2I - output array for the imaginary part of the second eigenvalue * @param {Float64Array} CS - output array for cosine of the rotation * @param {Float64Array} SN - output array for sine of the rotation * @returns {void} * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var A = new Float64Array( [ 4.0 ] ); * var B = new Float64Array( [ -5.0 ] ); * var C = new Float64Array( [ 2.0 ] ); * var D = new Float64Array( [ -3.0 ] ); * var RT1R = new Float64Array( 1 ); * var RT1I = new Float64Array( 1 ); * var RT2R = new Float64Array( 1 ); * var RT2I = new Float64Array( 1 ); * var CS = new Float64Array( 1 ); * var SN = new Float64Array( 1 ); * * dlanv2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN ); * // A => <Float64Array>[ 2.0 ] * // B => <Float64Array>[ -7.0 ] * // C => <Float64Array>[ 0.0 ] * // D => <Float64Array>[ -1.0 ] * // RT1R => <Float64Array>[ 2.0 ] * // RT1I => <Float64Array>[ 0.0 ] * // RT2R => <Float64Array>[ -1.0 ] * // RT2I => <Float64Array>[ 0.0 ] * // CS => <Float64Array>[ ~0.93 ] * // SN => <Float64Array>[ ~0.34 ] */ function dlanv2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN ) { return base( A, 0, B, 0, C, 0, D, 0, RT1R, 0, RT1I, 0, RT2R, 0, RT2I, 0, CS, 0, SN, 0 ); // eslint-disable-line max-len } // EXPORTS // module.exports = dlanv2; |