All files / stats/array/variancewd/lib main.js

100% Statements 120/120
100% Branches 11/11
100% Functions 1/1
100% Lines 120/120

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 1211x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 57x 57x 57x 57x 18x 18x 57x 57x 4x 4x 57x 27x 27x 8x 8x 57x 8x 8x 27x 57x 1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isCollection = require( '@stdlib/assert/is-collection' );
var isNumber = require( '@stdlib/assert/is-number' ).isPrimitive;
var dtypes = require( '@stdlib/array/dtypes' );
var dtype = require( '@stdlib/array/dtype' );
var contains = require( '@stdlib/array/base/assert/contains' );
var join = require( '@stdlib/array/base/join' );
var strided = require( '@stdlib/stats/base/variancewd' ).ndarray;
var format = require( '@stdlib/string/format' );
 
 
// VARIABLES //
 
var IDTYPES = dtypes( 'real_and_generic' );
var GENERIC_DTYPE = 'generic';
 
 
// MAIN //
 
/**
* Computes the standard deviation of an array using Welford's algorithm.
*
* ## Method
*
* -   This implementation uses Welford's algorithm for efficient computation, which can be derived as follows. Let
*
*     ```tex
*     \begin{align*}
*     S_n &= n \sigma_n^2 \\
*         &= \sum_{i=1}^{n} (x_i - \mu_n)^2 \\
*         &= \biggl(\sum_{i=1}^{n} x_i^2 \biggr) - n\mu_n^2
*     \end{align*}
*     ```
*
*     Accordingly,
*
*     ```tex
*     \begin{align*}
*     S_n - S_{n-1} &= \sum_{i=1}^{n} x_i^2 - n\mu_n^2 - \sum_{i=1}^{n-1} x_i^2 + (n-1)\mu_{n-1}^2 \\
*                   &= x_n^2 - n\mu_n^2 + (n-1)\mu_{n-1}^2 \\
*                   &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1}^2 - \mu_n^2) \\
*                   &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1} - \mu_n)(\mu_{n-1} + \mu_n) \\
*                   &= x_n^2 - \mu_{n-1}^2 + (\mu_{n-1} - x_n)(\mu_{n-1} + \mu_n) \\
*                   &= x_n^2 - \mu_{n-1}^2 + \mu_{n-1}^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
*                   &= x_n^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
*                   &= (x_n - \mu_{n-1})(x_n - \mu_n) \\
*                   &= S_{n-1} + (x_n - \mu_{n-1})(x_n - \mu_n)
*     \end{align*}
*     ```
*
*     where we use the identity
*
*     ```tex
*     x_n - \mu_{n-1} = n (\mu_n - \mu_{n-1})
*     ```
*
* ## References
*
* -   Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022](https://doi.org/10.1080/00401706.1962.10490022).
* -   van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961](https://doi.org/10.1145/362929.362961).
*
* @param {NumericArray} x - input array
* @param {number} [correction=1.0] - degrees of freedom adjustment
* @throws {TypeError} first argument must be an array-like object
* @throws {TypeError} first argument must have a supported data type
* @throws {TypeError} second argument must be a number
* @returns {number} variance
*
* @example
* var x = [ 1.0, -2.0, 2.0 ];
*
* var v = variancewd( x, 1.0 );
* // returns ~4.3333
*/
function variancewd( x ) {
	var correction;
	var dt;
	if ( !isCollection( x ) ) {
		throw new TypeError( format( 'invalid argument. First argument must be an array-like object. Value: `%s`.', x ) );
	}
	dt = dtype( x ) || GENERIC_DTYPE;
	if ( !contains( IDTYPES, dt ) ) {
		throw new TypeError( format( 'invalid argument. First argument must have one of the following data types: "%s". Data type: `%s`.', join( IDTYPES, '", "' ), dt ) );
	}
	if ( arguments.length > 1 ) {
		correction = arguments[ 1 ];
		if ( !isNumber( correction ) ) {
			throw new TypeError( format( 'invalid argument. Second argument must be a number. Value: `%s`.', correction ) );
		}
	} else {
		correction = 1.0;
	}
	return strided( x.length, correction, x, 1, 0 );
}
 
 
// EXPORTS //
 
module.exports = variancewd;