Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 57x 57x 57x 57x 18x 18x 57x 57x 4x 4x 57x 27x 27x 8x 8x 57x 8x 8x 27x 57x 1x 1x 1x 1x 1x | /** * @license Apache-2.0 * * Copyright (c) 2025 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isCollection = require( '@stdlib/assert/is-collection' ); var isNumber = require( '@stdlib/assert/is-number' ).isPrimitive; var dtypes = require( '@stdlib/array/dtypes' ); var dtype = require( '@stdlib/array/dtype' ); var contains = require( '@stdlib/array/base/assert/contains' ); var join = require( '@stdlib/array/base/join' ); var strided = require( '@stdlib/stats/base/variancewd' ).ndarray; var format = require( '@stdlib/string/format' ); // VARIABLES // var IDTYPES = dtypes( 'real_and_generic' ); var GENERIC_DTYPE = 'generic'; // MAIN // /** * Computes the standard deviation of an array using Welford's algorithm. * * ## Method * * - This implementation uses Welford's algorithm for efficient computation, which can be derived as follows. Let * * ```tex * \begin{align*} * S_n &= n \sigma_n^2 \\ * &= \sum_{i=1}^{n} (x_i - \mu_n)^2 \\ * &= \biggl(\sum_{i=1}^{n} x_i^2 \biggr) - n\mu_n^2 * \end{align*} * ``` * * Accordingly, * * ```tex * \begin{align*} * S_n - S_{n-1} &= \sum_{i=1}^{n} x_i^2 - n\mu_n^2 - \sum_{i=1}^{n-1} x_i^2 + (n-1)\mu_{n-1}^2 \\ * &= x_n^2 - n\mu_n^2 + (n-1)\mu_{n-1}^2 \\ * &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1}^2 - \mu_n^2) \\ * &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1} - \mu_n)(\mu_{n-1} + \mu_n) \\ * &= x_n^2 - \mu_{n-1}^2 + (\mu_{n-1} - x_n)(\mu_{n-1} + \mu_n) \\ * &= x_n^2 - \mu_{n-1}^2 + \mu_{n-1}^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\ * &= x_n^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\ * &= (x_n - \mu_{n-1})(x_n - \mu_n) \\ * &= S_{n-1} + (x_n - \mu_{n-1})(x_n - \mu_n) * \end{align*} * ``` * * where we use the identity * * ```tex * x_n - \mu_{n-1} = n (\mu_n - \mu_{n-1}) * ``` * * ## References * * - Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022](https://doi.org/10.1080/00401706.1962.10490022). * - van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961](https://doi.org/10.1145/362929.362961). * * @param {NumericArray} x - input array * @param {number} [correction=1.0] - degrees of freedom adjustment * @throws {TypeError} first argument must be an array-like object * @throws {TypeError} first argument must have a supported data type * @throws {TypeError} second argument must be a number * @returns {number} variance * * @example * var x = [ 1.0, -2.0, 2.0 ]; * * var v = variancewd( x, 1.0 ); * // returns ~4.3333 */ function variancewd( x ) { var correction; var dt; if ( !isCollection( x ) ) { throw new TypeError( format( 'invalid argument. First argument must be an array-like object. Value: `%s`.', x ) ); } dt = dtype( x ) || GENERIC_DTYPE; if ( !contains( IDTYPES, dt ) ) { throw new TypeError( format( 'invalid argument. First argument must have one of the following data types: "%s". Data type: `%s`.', join( IDTYPES, '", "' ), dt ) ); } if ( arguments.length > 1 ) { correction = arguments[ 1 ]; if ( !isNumber( correction ) ) { throw new TypeError( format( 'invalid argument. Second argument must be a number. Value: `%s`.', correction ) ); } } else { correction = 1.0; } return strided( x.length, correction, x, 1, 0 ); } // EXPORTS // module.exports = variancewd; |