All files / stats/array/variancepn/lib main.js

100% Statements 90/90
100% Branches 11/11
100% Functions 1/1
100% Lines 90/90

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 911x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 57x 57x 57x 57x 18x 18x 57x 57x 4x 4x 57x 27x 27x 8x 8x 57x 8x 8x 27x 57x 1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isCollection = require( '@stdlib/assert/is-collection' );
var isNumber = require( '@stdlib/assert/is-number' ).isPrimitive;
var dtypes = require( '@stdlib/array/dtypes' );
var dtype = require( '@stdlib/array/dtype' );
var contains = require( '@stdlib/array/base/assert/contains' );
var join = require( '@stdlib/array/base/join' );
var strided = require( '@stdlib/stats/base/variancepn' ).ndarray;
var format = require( '@stdlib/string/format' );
 
 
// VARIABLES //
 
var IDTYPES = dtypes( 'real_and_generic' );
var GENERIC_DTYPE = 'generic';
 
 
// MAIN //
 
/**
* Computes the standard deviation of an array using a two-pass algorithm.
*
* ## Method
*
* -   This implementation uses a two-pass approach, as suggested by Neely (1966).
*
* ## References
*
* -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
* -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
*
* @param {NumericArray} x - input array
* @param {number} [correction=1.0] - degrees of freedom adjustment
* @throws {TypeError} first argument must be an array-like object
* @throws {TypeError} first argument must have a supported data type
* @throws {TypeError} second argument must be a number
* @returns {number} variance
*
* @example
* var x = [ 1.0, -2.0, 2.0 ];
*
* var v = variancepn( x, 1.0 );
* // returns ~4.3333
*/
function variancepn( x ) {
	var correction;
	var dt;
	if ( !isCollection( x ) ) {
		throw new TypeError( format( 'invalid argument. First argument must be an array-like object. Value: `%s`.', x ) );
	}
	dt = dtype( x ) || GENERIC_DTYPE;
	if ( !contains( IDTYPES, dt ) ) {
		throw new TypeError( format( 'invalid argument. First argument must have one of the following data types: "%s". Data type: `%s`.', join( IDTYPES, '", "' ), dt ) );
	}
	if ( arguments.length > 1 ) {
		correction = arguments[ 1 ];
		if ( !isNumber( correction ) ) {
			throw new TypeError( format( 'invalid argument. Second argument must be a number. Value: `%s`.', correction ) );
		}
	} else {
		correction = 1.0;
	}
	return strided( x.length, correction, x, 1, 0 );
}
 
 
// EXPORTS //
 
module.exports = variancepn;