Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 7038x 7038x 7038x 7038x 7038x 7038x 1x 1x 7038x 3x 3x 7038x 4x 4x 7038x 4x 4x 7026x 7026x 7026x 7026x 7026x 7026x 7026x 7026x 7026x 7026x 7026x 7026x 7026x 7026x 7038x 1x 1x 1x 1x 1x | /** * @license Apache-2.0 * * Copyright (c) 2025 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * * ## Notice * * The original C code, long comment, copyright, license, and constants are from [Cephes]{@link http://www.netlib.org/cephes}. The implementation follows the original, but has been modified for JavaScript. * * ```text * Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier * * Some software in this archive may be from the book _Methods and Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster International, 1989) or from the Cephes Mathematical Library, a commercial product. In either event, it is copyrighted by the author. What you see here may be used freely but it comes with no support or guarantee. * * Stephen L. Moshier * moshier@na-net.ornl.gov * ``` */ 'use strict'; // MODULES // var floorf = require( '@stdlib/math/base/special/floorf' ); var ldexpf = require( '@stdlib/math/base/special/ldexpf' ); var isnanf = require( '@stdlib/math/base/assert/is-nanf' ); var PINF = require( '@stdlib/constants/float32/pinf' ); var f32 = require( '@stdlib/number/float64/base/to-float32' ); var toInt32 = require( '@stdlib/number/float64/base/to-int32' ); var polyval = require( './polyval.js' ); // VARIABLES // var LOG210 = 3.32192809488736234787; var LG102A = 0.30078125000000000000; var LG102B = 0.000248745663981195213739; var MAXL10 = 38.230809449325611792; // MAIN // /** * Returns `10` raised to the `x` power of a single-precision floating-point number. * * ## Method * * - Range reduction is accomplished by expressing the argument as \\( 10^x = 2^n 10^f \\), with \\( |f| < 0.5 log_{10}(2) \\). The Pade' form * * ```tex * 1 + f * P(f) * ``` * * is used to approximate \\( 10^f \\). * * ## Notes * * - Relative error: * * | arithmetic | domain | # trials | peak | rms | * |:----------:|:-----------:|:--------:|:-------:|:-------:| * | IEEE | -38,+38 | 100000 | 9.8e-8 | 2.8e-8 | * * @param {number} x - input value * @returns {number} function value * * @example * var v = exp10f( 3.0 ); * // returns 1000.0 * * @example * var v = exp10f( -9.0 ); * // returns ~1.0e-9 * * @example * var v = exp10f( 0.0 ); * // returns 1.0 * * @example * var v = exp10f( NaN ); * // returns NaN */ function exp10f( x ) { var xc; var px; var n; if ( isnanf( x ) ) { return x; } if ( x === 0.0 ) { return 1.0; } if ( x > MAXL10 ) { return PINF; } if ( x < (-1 * MAXL10) ) { return 0.0; } // Express 10^x = 10^g 2^n = 10^g 10^( n log10(2) ) = 10^( g + n log10(2) ) px = floorf( ( LOG210 * f32(x) ) + 0.5 ); n = toInt32( px ); xc = f32(x); xc = xc - ( px * LG102A ); xc = xc - ( px * LG102B ); // Polynomial approximation for fractional part: 10^f ≈ 1 + f * P(f) px = xc * polyval( xc ); xc = 1.0 + px; // Multiply by power of 2: return ldexpf( xc, n ); } // EXPORTS // module.exports = exp10f; |