Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 | 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 92x 28x 28x 28x 28x 28x 28x 28x 28x 28x 28x 28x 28x 92x 92x 6x 2x 2x 6x 2x 2x 2x 2x 86x 86x 86x 86x 166x 166x 166x 166x 166x 166x 166x 8x 8x 166x 86x 86x 86x 86x 6x 2x 2x 6x 2x 2x 2x 2x 80x 80x 80x 80x 8x 8x 8x 8x 8x 8x 8x 8x 8x 4x 4x 8x 4x 4x 72x 72x 72x 80x 36x 36x 36x 36x 36x 16x 16x 8x 8x 8x 8x 16x 16x 16x 16x 8x 8x 16x 8x 8x 20x 20x 20x 20x 20x 20x 4x 4x 20x 12x 12x 4x 4x 36x 36x 36x 36x 36x 36x 36x 12x 12x 36x 12x 12x 12x 12x 92x 4x 4x 4x 4x 4x | /** * @license Apache-2.0 * * Copyright (c) 2025 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isComplexArray = require( '@stdlib/array/base/assert/is-complex-typed-array' ); var isBooleanArray = require( '@stdlib/array/base/assert/is-booleanarray' ); var isBoolean = require( '@stdlib/assert/is-boolean' ).isPrimitive; var isComplexLike = require( '@stdlib/assert/is-complex-like' ); var iterationOrder = require( '@stdlib/ndarray/base/iteration-order' ); var minmaxViewBufferIndex = require( '@stdlib/ndarray/base/minmax-view-buffer-index' ); var ndarray2object = require( '@stdlib/ndarray/base/ndarraylike2object' ); var reinterpretComplex = require( '@stdlib/strided/base/reinterpret-complex' ); var reinterpretBoolean = require( '@stdlib/strided/base/reinterpret-boolean' ); var real = require( '@stdlib/complex/float64/real' ); var imag = require( '@stdlib/complex/float64/imag' ); var gscal = require( '@stdlib/blas/base/gscal' ); var blockedaccessorincludes2d = require( './2d_blocked_accessors.js' ); var blockedaccessorincludes3d = require( './3d_blocked_accessors.js' ); var blockedaccessorincludes4d = require( './4d_blocked_accessors.js' ); var blockedaccessorincludes5d = require( './5d_blocked_accessors.js' ); var blockedaccessorincludes6d = require( './6d_blocked_accessors.js' ); var blockedaccessorincludes7d = require( './7d_blocked_accessors.js' ); var blockedaccessorincludes8d = require( './8d_blocked_accessors.js' ); var blockedaccessorincludes9d = require( './9d_blocked_accessors.js' ); var blockedaccessorincludes10d = require( './10d_blocked_accessors.js' ); // eslint-disable-line id-length var blockedcomplexincludes2d = require( './2d_blocked_complex.js' ); var blockedcomplexincludes3d = require( './3d_blocked_complex.js' ); var blockedcomplexincludes4d = require( './4d_blocked_complex.js' ); var blockedcomplexincludes5d = require( './5d_blocked_complex.js' ); var blockedcomplexincludes6d = require( './6d_blocked_complex.js' ); var blockedcomplexincludes7d = require( './7d_blocked_complex.js' ); var blockedcomplexincludes8d = require( './8d_blocked_complex.js' ); var blockedcomplexincludes9d = require( './9d_blocked_complex.js' ); var blockedcomplexincludes10d = require( './10d_blocked_complex.js' ); var blockedincludes2d = require( './2d_blocked.js' ); var blockedincludes3d = require( './3d_blocked.js' ); var blockedincludes4d = require( './4d_blocked.js' ); var blockedincludes5d = require( './5d_blocked.js' ); var blockedincludes6d = require( './6d_blocked.js' ); var blockedincludes7d = require( './7d_blocked.js' ); var blockedincludes8d = require( './8d_blocked.js' ); var blockedincludes9d = require( './9d_blocked.js' ); var blockedincludes10d = require( './10d_blocked.js' ); var accessorincludes0d = require( './0d_accessors.js' ); var accessorincludes1d = require( './1d_accessors.js' ); var accessorincludes2d = require( './2d_accessors.js' ); var accessorincludes3d = require( './3d_accessors.js' ); var accessorincludes4d = require( './4d_accessors.js' ); var accessorincludes5d = require( './5d_accessors.js' ); var accessorincludes6d = require( './6d_accessors.js' ); var accessorincludes7d = require( './7d_accessors.js' ); var accessorincludes8d = require( './8d_accessors.js' ); var accessorincludes9d = require( './9d_accessors.js' ); var accessorincludes10d = require( './10d_accessors.js' ); var accessorincludesnd = require( './nd_accessors.js' ); var complexincludes0d = require( './0d_complex.js' ); var complexincludes1d = require( './1d_complex.js' ); var complexincludes2d = require( './2d_complex.js' ); var complexincludes3d = require( './3d_complex.js' ); var complexincludes4d = require( './4d_complex.js' ); var complexincludes5d = require( './5d_complex.js' ); var complexincludes6d = require( './6d_complex.js' ); var complexincludes7d = require( './7d_complex.js' ); var complexincludes8d = require( './8d_complex.js' ); var complexincludes9d = require( './9d_complex.js' ); var complexincludes10d = require( './10d_complex.js' ); var complexincludesnd = require( './nd_complex.js' ); var includes0d = require( './0d.js' ); var includes1d = require( './1d.js' ); var includes2d = require( './2d.js' ); var includes3d = require( './3d.js' ); var includes4d = require( './4d.js' ); var includes5d = require( './5d.js' ); var includes6d = require( './6d.js' ); var includes7d = require( './7d.js' ); var includes8d = require( './8d.js' ); var includes9d = require( './9d.js' ); var includes10d = require( './10d.js' ); var includesnd = require( './nd.js' ); // VARIABLES // var INCLUDES = [ includes0d, includes1d, includes2d, includes3d, includes4d, includes5d, includes6d, includes7d, includes8d, includes9d, includes10d ]; var ACCESSOR_INCLUDES = [ accessorincludes0d, accessorincludes1d, accessorincludes2d, accessorincludes3d, accessorincludes4d, accessorincludes5d, accessorincludes6d, accessorincludes7d, accessorincludes8d, accessorincludes9d, accessorincludes10d ]; var COMPLEX_INCLUDES = [ complexincludes0d, complexincludes1d, complexincludes2d, complexincludes3d, complexincludes4d, complexincludes5d, complexincludes6d, complexincludes7d, complexincludes8d, complexincludes9d, complexincludes10d ]; var BLOCKED_INCLUDES = [ blockedincludes2d, // 0 blockedincludes3d, blockedincludes4d, blockedincludes5d, blockedincludes6d, blockedincludes7d, blockedincludes8d, blockedincludes9d, blockedincludes10d // 8 ]; var BLOCKED_ACCESSOR_INCLUDES = [ blockedaccessorincludes2d, // 0 blockedaccessorincludes3d, blockedaccessorincludes4d, blockedaccessorincludes5d, blockedaccessorincludes6d, blockedaccessorincludes7d, blockedaccessorincludes8d, blockedaccessorincludes9d, blockedaccessorincludes10d // 8 ]; var BLOCKED_COMPLEX_INCLUDES = [ blockedcomplexincludes2d, // 0 blockedcomplexincludes3d, blockedcomplexincludes4d, blockedcomplexincludes5d, blockedcomplexincludes6d, blockedcomplexincludes7d, blockedcomplexincludes8d, blockedcomplexincludes9d, blockedcomplexincludes10d // 8 ]; var MAX_DIMS = INCLUDES.length - 1; // MAIN // /** * Tests whether an ndarray contains a specified value. * * ## Notes * * - A provided ndarray should be an `object` with the following properties: * * - **dtype**: data type. * - **data**: data buffer. * - **shape**: dimensions. * - **strides**: stride lengths. * - **offset**: index offset. * - **order**: specifies whether an ndarray is row-major (C-style) or column major (Fortran-style). * * @param {ArrayLikeObject<Object>} arrays - array-like object containing one input array and a zero-dimensional search element array * @returns {boolean} result * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * // Create a data buffer: * var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] ); * * // Define the shape of the input array: * var shape = [ 3, 1, 2 ]; * * // Define the array strides: * var sx = [ 4, 4, 1 ]; * * // Define the index offset: * var ox = 0; * * // Create the input ndarray-like object: * var x = { * 'dtype': 'float64', * 'data': xbuf, * 'shape': shape, * 'strides': sx, * 'offset': ox, * 'order': 'row-major' * }; * * // Create the search element ndarray-like object: * var searchElement = { * 'dtype': 'float64', * 'data': new Float64Array( [ 2.0 ] ), * 'shape': [], * 'strides': [ 0 ], * 'offset': 0, * 'order': 'row-major' * }; * * // Perform reduction: * var out = includes( [ x, searchElement ] ); * // returns true */ function includes( arrays ) { var isCmplx; var value; var ndims; var xmmv; var shx; var iox; var len; var sx; var ox; var ns; var x; var d; var i; // Unpack the ndarrays and standardize ndarray meta data: x = ndarray2object( arrays[ 0 ] ); value = ndarray2object( arrays[ 1 ] ); shx = x.shape; ndims = shx.length; // Resolve the search element as a scalar: value = value.accessors[ 0 ]( value.data, value.offset ); // Check for known array types which can be reinterpreted for better iteration performance... if ( isBooleanArray( x.data ) ) { if ( !isBoolean( value ) ) { return false; } x.data = reinterpretBoolean( x.data, 0 ); x.accessorProtocol = false; } else if ( isComplexArray( x.data ) ) { if ( !isComplexLike( value ) ) { return false; } // TODO: consider adding something like `complex/base/complex2object` where we normalize a user-provided complex-like object to a standardized object shape value = { 're': real( value ), 'im': imag( value ) }; x.data = reinterpretComplex( x.data, 0 ); x.accessorProtocol = false; x.strides = gscal( ndims, 2, x.strides, 1 ); x.offset *= 2; isCmplx = true; } // Determine whether we can avoid iteration altogether... if ( ndims === 0 ) { if ( x.accessorProtocol ) { return ACCESSOR_INCLUDES[ ndims ]( x, value ); } if ( isCmplx ) { return COMPLEX_INCLUDES[ ndims ]( x, value ); } return INCLUDES[ ndims ]( x, value ); } // Compute the number of elements and the number of singleton dimensions... len = 1; // number of elements ns = 0; // number of singleton dimensions for ( i = 0; i < ndims; i++ ) { d = shx[ i ]; // Note that, if one of the dimensions is `0`, the length will be `0`... len *= d; // Check whether the current dimension is a singleton dimension... if ( d === 1 ) { ns += 1; } } // Check whether we were provided an empty ndarray... if ( len === 0 ) { return true; } // Determine whether the ndarray is one-dimensional and thus readily translates to a one-dimensional strided array... if ( ndims === 1 ) { if ( x.accessorProtocol ) { return ACCESSOR_INCLUDES[ ndims ]( x, value ); } if ( isCmplx ) { return COMPLEX_INCLUDES[ ndims ]( x, value ); } return INCLUDES[ ndims ]( x, value ); } sx = x.strides; // Determine whether the ndarray has only **one** non-singleton dimension (e.g., ndims=4, shape=[10,1,1,1]) so that we can treat an ndarray as being equivalent to a one-dimensional strided array... if ( ns === ndims-1 ) { // Get the index of the non-singleton dimension... for ( i = 0; i < ndims; i++ ) { if ( shx[ i ] !== 1 ) { break; } } x.shape = [ shx[i] ]; x.strides = [ sx[i] ]; if ( x.accessorProtocol ) { return ACCESSOR_INCLUDES[ 1 ]( x, value ); } if ( isCmplx ) { return COMPLEX_INCLUDES[ 1 ]( x, value ); } return INCLUDES[ 1 ]( x, value ); } iox = iterationOrder( sx ); // +/-1 // Determine whether we can avoid blocked iteration... if ( iox !== 0 ) { // Determine the minimum and maximum linear indices which are accessible by the array view: xmmv = minmaxViewBufferIndex( shx, sx, x.offset ); // Determine whether we can ignore shape (and strides) and treat the ndarray as a linear one-dimensional strided array... if ( len === ( xmmv[1]-xmmv[0]+1 ) || ( isCmplx && len*2 === ( xmmv[1]-xmmv[0]+1 ) ) ) { // eslint-disable-line max-len // Note: the above is equivalent to @stdlib/ndarray/base/assert/is-contiguous, but in-lined so we can retain computed values... if ( iox === 1 ) { ox = xmmv[ 0 ]; } else { ox = xmmv[ 1 ]; } x.shape = [ len ]; x.strides = [ ( isCmplx ) ? iox*2 : iox ]; x.offset = ox; if ( x.accessorProtocol ) { return ACCESSOR_INCLUDES[ 1 ]( x, value ); } if ( isCmplx ) { return COMPLEX_INCLUDES[ 1 ]( x, value ); } return INCLUDES[ 1 ]( x, value ); } // The ndarray is non-contiguous, so we cannot directly use one-dimensional array functionality... // Determine whether we can use simple nested loops... if ( ndims <= MAX_DIMS ) { // So long as iteration always moves in the same direction (i.e., no mixed sign strides), we can leverage cache-optimal (i.e., normal) nested loops without resorting to blocked iteration... if ( x.accessorProtocol ) { return ACCESSOR_INCLUDES[ ndims ]( x, value ); } if ( isCmplx ) { return COMPLEX_INCLUDES[ ndims ]( x, value ); } return INCLUDES[ ndims ]( x, value ); } // Fall-through to blocked iteration... } // At this point, we're either dealing with a non-contiguous n-dimensional array or a high dimensional n-dimensional array, so our only hope is that we can still perform blocked iteration... // Determine whether we can perform blocked iteration... if ( ndims <= MAX_DIMS ) { if ( x.accessorProtocol ) { return BLOCKED_ACCESSOR_INCLUDES[ ndims-2 ]( x, value ); } if ( isCmplx ) { return BLOCKED_COMPLEX_INCLUDES[ ndims-2 ]( x, value ); } return BLOCKED_INCLUDES[ ndims-2 ]( x, value ); } // Fall-through to linear view iteration without regard for how data is stored in memory (i.e., take the slow path)... if ( x.accessorProtocol ) { return accessorincludesnd( x, value ); } if ( isCmplx ) { return complexincludesnd( x, value ); } return includesnd( x, value ); } // EXPORTS // module.exports = includes; |