All files / blas/base/sspmv/lib sspmv.js

100% Statements 173/173
100% Branches 36/36
100% Functions 1/1
100% Lines 173/173

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 1742x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 36x 36x 36x 36x 36x 36x 36x 36x 36x 36x 36x 36x 36x 36x 36x 4x 4x 36x 4x 4x 36x 3x 3x 36x 1x 1x 36x 1x 1x 36x 4x 4x 19x 19x 36x 8x 4x 4x 4x 2x 2x 4x 4x 8x 36x 8x 8x 36x 7x 36x 4x 4x 36x 7x 36x 4x 4x 11x 11x 11x 36x 6x 36x 6x 6x 6x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 6x 6x 5x 5x 5x 36x 15x 15x 15x 15x 15x 15x 15x 15x 15x 15x 15x 15x 15x 15x 15x 5x 36x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2024 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var sfill = require( '@stdlib/blas/ext/base/sfill' );
var sscal = require( '@stdlib/blas/base/sscal' );
var f32 = require( '@stdlib/number/float64/base/to-float32' );
var isLayout = require( '@stdlib/blas/base/assert/is-layout' );
var isMatrixTriangle = require( '@stdlib/blas/base/assert/is-matrix-triangle' );
var isRowMajor = require( '@stdlib/ndarray/base/assert/is-row-major-string' );
var isColumnMajor = require( '@stdlib/ndarray/base/assert/is-column-major-string' );
 
 
// MAIN //
 
/**
* Performs the matrix-vector operation `y = alpha*A*x + beta*y` where `alpha` and `beta` are scalars, `x` and `y` are `N` element vectors, and `A` is an `N` by `N` symmetric matrix supplied in packed form.
*
* @param {string} order - storage layout
* @param {string} uplo - specifies whether the upper or lower triangular part of the symmetric matrix `A` is supplied
* @param {NonNegativeInteger} N - number of elements along each dimension of `A`
* @param {number} alpha - scalar constant
* @param {Float32Array} AP - packed form of a symmetric matrix `A`
* @param {Float32Array} x - first input array
* @param {integer} strideX - `x` stride length
* @param {number} beta - scalar constant
* @param {Float32Array} y - second input array
* @param {integer} strideY - `y` stride length
* @throws {TypeError} first argument must be a valid order
* @throws {TypeError} second argument must specify whether the lower or upper triangular matrix is supplied
* @throws {RangeError} third argument must be a nonnegative integer
* @throws {RangeError} seventh argument must be non-zero
* @throws {RangeError} tenth argument must be non-zero
* @returns {Float32Array} `y`
*
* @example
* var Float32Array = require( '@stdlib/array/float32' );
*
* var AP = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
* var x = new Float32Array( [ 1.0, 1.0, 1.0 ] );
* var y = new Float32Array( [ 1.0, 1.0, 1.0 ] );
*
* sspmv( 'column-major', 'lower', 3, 1.0, AP, x, 1, 1.0, y, 1 );
* // y => <Float32Array>[ ~7.0, ~12.0, ~15.0 ]
*/
function sspmv( order, uplo, N, alpha, AP, x, strideX, beta, y, strideY ) {
	var temp1;
	var temp2;
	var ix;
	var iy;
	var jx;
	var jy;
	var kk;
	var kx;
	var ky;
	var sy;
	var j;
	var k;
 
	if ( !isLayout( order ) ) {
		throw new TypeError( 'invalid argument. First argument must be a valid order. Value: `%s`.', order );
	}
	if ( !isMatrixTriangle( uplo ) ) {
		throw new TypeError( 'invalid argument. Second argument must specify whether the lower or upper triangular matrix is supplied. Value: `%s`.', uplo );
	}
	if ( N < 0 ) {
		throw new RangeError( 'invalid argument. Third argument must be a nonnegative integer. Value: `%d`.', N );
	}
	if ( strideX === 0 ) {
		throw new RangeError( 'invalid argument. Seventh argument must be non-zero. Value: `%d`.', strideX );
	}
	if ( strideY === 0 ) {
		throw new RangeError( 'invalid argument. Tenth argument must be non-zero. Value: `%d`.', strideY );
	}
	if ( N === 0 || ( alpha === 0.0 && beta === 1.0 ) ) {
		return y;
	}
	// Form: y = beta*y
	sy = strideY;
	if ( beta !== 1.0 ) {
		if ( beta === 0.0 ) {
			sfill( N, 0.0, y, strideY );
		} else {
			if ( strideY < 0 ) {
				sy = -sy;
			}
			sscal( N, beta, y, sy );
		}
	}
	if ( alpha === 0.0 ) {
		return y;
	}
	if ( strideX > 0 ) {
		kx = 0;
	} else {
		kx = ( 1 - N ) * strideX;
	}
	if ( strideY > 0 ) {
		ky = 0;
	} else {
		ky = ( 1 - N ) * strideY;
	}
	// Form: y = alpha*A*x + y
	kk = 0;
	if (
		( isRowMajor( order ) && uplo === 'upper' ) ||
		( isColumnMajor( order ) && uplo === 'lower' )
	) {
		jx = kx;
		jy = ky;
		for ( j = 0; j < N; j++ ) {
			temp1 = f32( alpha * x[ jx ] );
			temp2 = 0.0;
			y[ jy ] += f32( temp1 * AP[ kk ] );
			ix = jx;
			iy = jy;
			for ( k = kk + 1; k < kk + N - j; k++ ) {
				ix += strideX;
				iy += strideY;
				y[ iy ] += f32( temp1 * AP[ k ] );
				temp2 += f32( AP[ k ] * x[ ix ] );
			}
			y[ jy ] += f32( alpha * temp2 );
			jx += strideX;
			jy += strideY;
			kk += N - j;
		}
		return y;
	}
	// ( order === 'row-major' && uplo === 'lower') || ( order === 'column-major' && uplo === 'upper' )
	jx = kx;
	jy = ky;
	for ( j = 0; j < N; j++ ) {
		temp1 = f32( alpha * x[ jx ] );
		temp2 = 0.0;
		ix = kx;
		iy = ky;
		for ( k = kk; k < kk + j; k++ ) {
			y[ iy ] += f32( temp1 * AP[ k ] );
			temp2 += f32( AP[ k ] * x[ ix ] );
			ix += strideX;
			iy += strideY;
		}
		y[ jy ] += f32( f32( temp1 * AP[ kk + j ] ) + f32( alpha * temp2 ) );
		jx += strideX;
		jy += strideY;
		kk += j + 1;
	}
	return y;
}
 
 
// EXPORTS //
 
module.exports = sspmv;