Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 20x 20x 20x 2x 2x 2x 2x 2x | /** * @license Apache-2.0 * * Copyright (c) 2025 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var base = require( './base.js' ); // MAIN // /** * Generates a real elementary reflector `H` of order `N` such that applying `H` to a vector `[alpha; x]` zeros out `X` using alternative indexing semantics. * * ## Notes * * - `H` is a Householder matrix with the form `H = I - tau * [1; v] * [1, v^T]`, where `tau` is a scalar and `v` is a vector. * - the input vector is `[alpha; x]`, where `alpha` is a scalar and `X` is a real `(n-1)`-element vector. * - the result of applying `H` to `[alpha; x]` is `[beta; 0]`, with `beta` being a scalar and the rest of the vector zeroed. * - if all elements of `X` are zero, then `tau = 0` and `H` is the identity matrix. * - otherwise, `1 <= tau <= 2` * * @param {NonNegativeInteger} N - number of rows/columns of the elementary reflector `H` * @param {Float64Array} X - overwritten by the vector `V` on exit, expects `N - 1` indexed elements * @param {integer} strideX - stride length for `X` * @param {NonNegativeInteger} offsetX - starting index of `X` * @param {Float64Array} out - array to store `alpha` and `tau`, first indexed element stores `alpha` and the second indexed element stores `tau` * @param {integer} strideOut - stride length for `out` * @param {NonNegativeInteger} offsetOut - starting index of `out` * @returns {void} overwrites the array `X` and `out` in place * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var X = new Float64Array( [ 2.0, 3.0, 4.0 ] ); * var out = new Float64Array( [ 4.0, 0.0 ] ); * * dlarfg( 4, X, 1, 0, out, 1, 0 ); * // X => <Float64Array>[ ~0.19, ~0.28, ~0.37 ] * // out => <Float64Array>[ ~-6.7, ~1.6 ] */ function dlarfg( N, X, strideX, offsetX, out, strideOut, offsetOut ) { base( N, X, strideX, offsetX, out, strideOut, offsetOut ); } // EXPORTS // module.exports = dlarfg; |