All files / lapack/base/dlarfg/lib dlarfg.js

100% Statements 91/91
100% Branches 2/2
100% Functions 1/1
100% Lines 91/91

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 922x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 4x 4x 4x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var base = require( './base.js' );
 
 
// MAIN //
 
/**
* Generates a real elementary reflector `H` of order `N` such that applying `H` to a vector `[alpha; X]` zeros out `X`.
*
* `H` is a Householder matrix with the form:
*
* ```tex
* H \cdot \begin{bmatrix} \alpha \\ x \end{bmatrix} = \begin{bmatrix} \beta \\ 0 \end{bmatrix}, \quad \text{and} \quad H^T H = I
* ```
*
* where:
*
* -   `tau` is a scalar
* -   `X` is a vector of length `N-1`
* -   `beta` is a scalar value
* -   `H` is an orthogonal matrix known as a Householder reflector.
*
* The reflector `H` is constructed in the form:
*
* ```tex
* H = I - \tau \begin{bmatrix}1 \\ v \end{bmatrix} \begin{bmatrix}1 & v^T \end{bmatrix}
* ```
*
* where:
*
* -   `tau` is a real scalar
* -   `V` is a real vector of length `N-1` that defines the Householder vector
* -   The vector `[1; V]` is the Householder direction\
*
* The values of `tau` and `V` are chosen so that applying `H` to the vector `[alpha; X]` results in a new vector `[beta; 0]`, i.e., only the first component remains nonzero. The reflector matrix `H` is symmetric and orthogonal, satisfying `H^T = H` and `H^T H = I`
*
* ## Special cases
*
* -   If all elements of `X` are zero, then `tau = 0` and `H = I`, the identity matrix.
* -   Otherwise, `tau` satisfies `1 ≤ tau ≤ 2`, ensuring numerical stability in transformations.
*
* ## Notes
*
* -   `X` should have `N-1` indexed elements
* -   The output array contains the following two elements: `alpha` and `tau`
*
* @param {NonNegativeInteger} N - number of rows/columns of the elementary reflector `H`
* @param {Float64Array} X - input vector
* @param {integer} incx - stride length for `X`
* @param {Float64Array} out - output array
* @returns {void}
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var X = new Float64Array( [ 2.0, 3.0, 4.0 ] );
* var out = new Float64Array( [ 4.0, 0.0 ] );
*
* dlarfg( 4, X, 1, out );
* // X => <Float64Array>[ ~0.19, ~0.28, ~0.37 ]
* // out => <Float64Array>[ ~-6.7, ~1.6 ]
*/
function dlarfg( N, X, incx, out ) {
	base( N, X, incx, 0, out, 1, 0 );
}
 
 
// EXPORTS //
 
module.exports = dlarfg;