All files / lapack/base/dlarfg/lib base.js

100% Statements 142/142
100% Branches 8/8
100% Functions 1/1
100% Lines 142/142

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 1433x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 6x 6x 6x 18x 18x 18x 18x 24x 6x 24x 12x 12x 12x 12x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 12x 12x 12x 6x 6x 12x 12x 12x 12x 24x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var dnrm2 = require( '@stdlib/blas/base/dnrm2' ).ndarray;
var sign = require( '@stdlib/math/base/special/copysign' );
var dlamch = require( '@stdlib/lapack/base/dlamch' );
var abs = require( '@stdlib/math/base/special/abs' );
var dscal = require( '@stdlib/blas/base/dscal' ).ndarray;
var dlapy2 = require( '@stdlib/lapack/base/dlapy2' );
 
 
// MAIN //
 
/**
* Generates a real elementary reflector `H` of order `N` such that applying `H` to a vector `[alpha; X]` zeros out `X`.
*
* `H` is a Householder matrix with the form:
*
* ```tex
* H \cdot \begin{bmatrix} \alpha \\ x \end{bmatrix} = \begin{bmatrix} \beta \\ 0 \end{bmatrix}, \quad \text{and} \quad H^T H = I
* ```
*
* where:
*
* -   `tau` is a scalar
* -   `X` is a vector of length `N-1`
* -   `beta` is a scalar value
* -   `H` is an orthogonal matrix known as a Householder reflector.
*
* The reflector `H` is constructed in the form:
*
* ```tex
* H = I - \tau \begin{bmatrix}1 \\ v \end{bmatrix} \begin{bmatrix}1 & v^T \end{bmatrix}
* ```
*
* where:
*
* -   `tau` is a real scalar
* -   `V` is a real vector of length `N-1` that defines the Householder vector
* -   The vector `[1; V]` is the Householder direction\
*
* The values of `tau` and `V` are chosen so that applying `H` to the vector `[alpha; X]` results in a new vector `[beta; 0]`, i.e., only the first component remains nonzero. The reflector matrix `H` is symmetric and orthogonal, satisfying `H^T = H` and `H^T H = I`
*
* ## Special cases
*
* -   If all elements of `X` are zero, then `tau = 0` and `H = I`, the identity matrix.
* -   Otherwise, `tau` satisfies `1 ≤ tau ≤ 2`, ensuring numerical stability in transformations.
*
* ## Notes
*
* -   `X` should have `N-1` indexed elements
* -   The output array contains the following two elements: `alpha` and `tau`
*
* @private
* @param {NonNegativeInteger} N - number of rows/columns of the elementary reflector `H`
* @param {Float64Array} X - input vector
* @param {integer} strideX - stride length for `X`
* @param {NonNegativeInteger} offsetX - starting index of `X`
* @param {Float64Array} out - output array
* @param {integer} strideOut - stride length for `out`
* @param {NonNegativeInteger} offsetOut - starting index of `out`
* @returns {void}
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var X = new Float64Array( [ 2.0, 3.0, 4.0 ] );
* var out = new Float64Array( [ 4.0, 0.0 ] );
*
* dlarfg( 4, X, 1, 0, out, 1, 0 );
* // X => <Float64Array>[ ~0.19, ~0.28, ~0.37 ]
* // out => <Float64Array>[ ~-6.7, ~1.6 ]
*/
function dlarfg( N, X, strideX, offsetX, out, strideOut, offsetOut ) {
	var safemin;
	var rsafmin;
	var xnorm;
	var alpha;
	var beta;
	var tau;
	var knt;
	var i;
 
	if ( N <= 1 ) {
		out[ offsetOut + strideOut ] = 0.0;
		return;
	}
 
	xnorm = dnrm2( N - 1, X, strideX, offsetX );
	alpha = out[ offsetOut ];
 
	if ( xnorm === 0.0 ) {
		out[ strideOut + offsetOut ] = 0.0;
	} else {
		beta = -1.0 * sign( dlapy2( alpha, xnorm ), alpha );
		safemin = dlamch( 'safemin' ) / dlamch( 'epsilon' );
		knt = 0;
		if ( abs( beta ) < safemin ) {
			rsafmin = 1.0 / safemin;
			while ( abs( beta ) < safemin && knt < 20 ) {
				knt += 1;
				dscal( N-1, rsafmin, X, strideX, offsetX );
				beta *= rsafmin;
				alpha *= rsafmin;
			}
			xnorm = dnrm2( N - 1, X, strideX, offsetX );
			beta = -1.0 * sign( dlapy2( alpha, xnorm ), alpha );
		}
		tau = ( beta - alpha ) / beta;
		dscal( N-1, 1.0 / ( alpha - beta ), X, strideX, offsetX );
		for ( i = 0; i < knt; i++ ) {
			beta *= safemin;
		}
 
		out[ offsetOut ] = beta;
		out[ strideOut + offsetOut ] = tau;
	}
}
 
 
// EXPORTS //
 
module.exports = dlarfg;