All files / math/base/special/ellipj/lib assign.js

94.97% Statements 227/239
90.47% Branches 19/21
100% Functions 1/1
94.97% Lines 227/239

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 2404x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 3x 3x 3x 3x 3x 3x 3x 3x 100040x 1x 1x 1x 1x 1x 1x 1x 100037x 20012x 20012x 20012x 20012x 20012x 20012x 100036x 20013x 20013x 20013x 20013x 20013x 80024x 20000x 20000x 20000x 20000x 20000x 20000x 20000x 20000x 20000x 20000x 20000x 60011x 20005x 20005x 20005x 20005x 20005x 20005x 20005x 20005x 20005x 20005x 20005x 20005x 20005x 20005x 20005x 20005x 20005x 20005x 20005x 20005x 20005x 20005x 20005x 20005x       40011x 20006x 20006x 20006x 20006x 20006x 20006x 101755x 101755x                   101755x 101755x 101755x 101755x 101755x 20006x 20006x 20006x 20006x 20006x 20006x 61743x 61743x 61743x 20006x 20006x 20006x 20006x 20006x 20006x 20006x 20006x 20006x 20006x 1080x 20006x 18926x 18926x 20006x 20006x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 100040x 4x 4x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var logger = require( 'debug' );
var sincos = require( '@stdlib/math/base/special/sincos' ).assign;
var ellipk = require( '@stdlib/math/base/special/ellipk' );
var floor = require( '@stdlib/math/base/special/floor' );
var sqrt = require( '@stdlib/math/base/special/sqrt' );
var cosh = require( '@stdlib/math/base/special/cosh' );
var sinh = require( '@stdlib/math/base/special/sinh' );
var tanh = require( '@stdlib/math/base/special/tanh' );
var atan = require( '@stdlib/math/base/special/atan' );
var asin = require( '@stdlib/math/base/special/asin' );
var sin = require( '@stdlib/math/base/special/sin' );
var cos = require( '@stdlib/math/base/special/cos' );
var abs = require( '@stdlib/math/base/special/abs' );
var SQRT_EPS = require( '@stdlib/constants/float64/sqrt-eps' );
var EPS = require( '@stdlib/constants/float64/eps' );
var PI = require( '@stdlib/constants/float64/pi' );
 
 
// VARIABLES //
 
var debug = logger( 'ellipj:assign' );
var tmp4 = [ 0.0, 0.0, 0.0, 0.0 ];
var tmp2 = [ 0.0, 0.0 ];
var ca = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ];
 
 
// MAIN //
 
/**
* Computes the Jacobi elliptic functions sn, cn, dn, and Jacobi amplitude am.
*
* @param {number} u - input value
* @param {number} m - modulus `m`, equivalent to `k²`
* @param {Collection} out - output array
* @param {integer} stride - output array stride
* @param {NonNegativeInteger} offset - output array index offset
* @returns {Collection} output array
*
* @example
* var v = assign( 0.3, 0.5, [ 0.0, 0.0, 0.0, 0.0 ], 1, 0 );
* // returns [ ~0.293, ~0.956, ~0.978, ~0.298 ]
*
* @example
* var v = assign( 0.0, 0.0, [ 0.0, 0.0, 0.0, 0.0 ], 1, 0 );
* // returns [ ~0.0, ~1.0, ~1.0, ~0.0 ]
*
* @example
* var v = assign( Infinity, 1.0, [ 0.0, 0.0, 0.0, 0.0 ], 1, 0 );
* // returns [ ~1.0, ~0.0, ~0.0, ~1.571 ]
*
* @example
* var v = assign( 0.0, -2.0, [ 0.0, 0.0, 0.0, 0.0 ], 1, 0 );
* // returns [ ~0.0, ~1.0, ~1.0, NaN ]
*
* @example
* var v = assign( NaN, NaN, [ 0.0, 0.0, 0.0, 0.0 ], 1, 0 );
* // returns [ NaN, NaN, NaN, NaN ]
*/
function assign( u, m, out, stride, offset ) {
	var dnDenom;
	var NANFLG;
	var uK2cen;
	var k1inv;
	var sechu;
	var sinhu;
	var tanhu;
	var phi0;
	var phi1;
	var atmp;
	var FLG;
	var gdu;
	var uK2;
	var uK4;
	var mu;
	var K2;
	var K4;
	var u0;
	var sn;
	var cn;
	var dn;
	var am;
	var k;
	var s;
	var c;
	var f;
	var a;
	var b;
	var N;
 
	if ( m < 0.0 ) {
		// A&S 16.10.1 for a negative parameter, mapping -m to 0 < mu < 1
		mu = -m / ( 1.0 - m );
		k1inv = sqrt( 1.0 - m );
		assign( u * k1inv, mu, tmp4, 1, 0 );
		sn = ( tmp4[ 0 ] / tmp4[ 2 ] ) / k1inv;
		cn = tmp4[ 1 ] / tmp4[ 2 ];
		dn = 1.0 / tmp4[ 2 ];
		am = NaN;
	} else if ( m > 1.0 ) {
		// A&S 16.11.1 for reciprocal parameter, mapping m > 1 to 0 < mu < 1
		k = sqrt( m );
		assign( u * k, 1.0 / m, tmp4, 1, 0 );
		sn = tmp4[ 0 ] / k;
		cn = tmp4[ 2 ];
		dn = tmp4[ 1 ];
		am = NaN;
	} else if ( m === 0.0 ) {
		// A&S table 16.6, limiting case m = 0: circular trigonometric functions
		sincos( u, tmp2, 1, 0 );
		sn = tmp2[ 0 ];
		cn = tmp2[ 1 ];
		dn = 1.0;
		am = u;
	} else if ( m === 1.0 ) {
		// A&S table 16.6: limiting case m = 1: hyperbolic functions
		sn = tanh( u );
		cn = 1.0 / cosh( u );
		dn = cn;
		am = atan( sinh( u ) );
	} else if ( m < SQRT_EPS ) {
		// A&S 16.13.1 for small-u approximations. Additionally, compute K at extra cost in order to ensure returned values are correct outside the range [0, K].
		K4 = 4.0 * ellipk( m );
		u0 = ( ( u % K4 ) + K4 ) % K4;
		sincos( u0, tmp2, 1, 0 );
		s = tmp2[ 0 ];
		c = tmp2[ 1 ];
		f = 0.25 * m * ( u0 - ( s * c ) );
		sn = s - ( f * c );
		cn = c + ( f * s );
		dn = 1.0 - ( 0.5 * m * s * s );
		am = u - ( 0.25 * m * ( u - ( s * c ) ) );
	} else if ( m > 1.0 - SQRT_EPS ) {
		// A&S 16.15.1 - 16.15.4 for near-unity approximations. Additionally, compute K at extra cost so that we may reflect as needed to ensure the returned values are correct.
 
		// Reduce by the half-period 2K, centered about u = 0
		K2 = ellipk( m ) * 2.0;
		uK2cen = ( u / K2 ) + 0.5;
		uK2 = K2 * ( ( uK2cen % 1.0 ) - 0.5 );
 
		// Flip sn and cn in this range to get the reflections correct. We must be careful about precisely reusing uK2cen in order to get the edge cases correct.
		uK4 = uK2cen % 4;
		FLG = uK4 >= 1.0 && uK4 < 2.0;
 
		sinhu = sinh( uK2 );
		sechu = 1.0 / cosh( uK2 );
		tanhu = tanh( uK2 );
		gdu = ( floor( uK2cen ) * PI ) + atan( sinhu );
 
		a = 0.25 * ( 1.0 - m );
		b = a * ( sinhu - ( uK2 * sechu ) );
		sn = tanhu + ( b * sechu );
		cn = sechu - ( b * tanhu );
		dn = sechu + ( a * ( sinhu + ( uK2 * sechu ) ) * tanhu );
		am = gdu + b;
 
		if ( FLG ) {
			sn = -sn;
			cn = -cn;
		}
	} else {
		// A&S 16.4.1. Compute using the arithmetic-geometric mean.
		a = 1.0;
		b = sqrt( 1.0 - m );
		N = -1;
		NANFLG = false;
		do {
			N += 1;
			if ( N > 8 ) {
				NANFLG = true;
				sn = NaN;
				cn = NaN;
				dn = NaN;
				am = NaN;

				debug( 'Warning: Overflow encountered in iteration. Returning NaN for all output values.' );
				break;
			}
			atmp = ( a + b ) * 0.5;
			c = ( a - b ) * 0.5;
			b = sqrt( a * b );
			a = atmp;
			ca[ N ] = c / a;
		} while ( ca[ N ] >= EPS );
 
		if ( !NANFLG ) {
			// A&S 16.4.3:
			phi1 = ( 1 << N ) * ( u * a );
			while ( N > 1 ) {
				N -= 1;
				phi1 = 0.5 * ( phi1 + asin( ca[ N ] * sin( phi1 ) ) );
			}
			phi0 = 0.5 * ( phi1 + asin( ca[ 0 ] * sin( phi1 ) ) );
 
			am = phi0;
			sincos( am, tmp2, 1, 0 );
			sn = tmp2[ 0 ];
			cn = tmp2[ 1 ];
 
			// When the denominator is small, switch to the definition of dn in terms of sn. Otherwise compute dn from the last two iterates.
			dnDenom = cos( phi1 - phi0 );
			if ( abs( dnDenom ) < 0.1 ) {
				dn = sqrt( 1.0 - ( m * sn * sn ) );
			} else {
				dn = cn / dnDenom;
			}
		}
	}
 
	out[ offset ] = sn;
	out[ offset + stride ] = cn;
	out[ offset + ( stride * 2 ) ] = dn;
	out[ offset + ( stride * 3 ) ] = am;
 
	return out;
}
 
module.exports = assign;