All files / lapack/base/dppequ/lib dppequ.js

100% Statements 79/79
100% Branches 8/8
100% Functions 1/1
100% Lines 79/79

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 802x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 40x 40x 13x 13x 40x 13x 13x 40x 5x 5x 9x 40x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isLayout = require( '@stdlib/blas/base/assert/is-layout' );
var format = require( '@stdlib/string/format' );
var isMatrixTriangle = require( '@stdlib/blas/base/assert/is-matrix-triangle' );
var base = require( './base.js' );
 
 
// MAIN //
 
/**
* Computes the row and column scaling factors intended to equilibrate a symmetric positive definite matrix `A` in packed storage and reduce it's condition number (with respect to the two-norm).
*
* ## Notes
*
* -   the function returns `0` if it sucessfully exits.
* -   if the function returns an integer `i` greater then zero then the `i`th diagonal element was non positive.
* -   the first indexed element of `out` represents `scond` and the second indexed elements represents `amax`, if it `scond` >= 0.1 and `amax` is not close to overflow/underflow then it is not worth scaling by `S`.
* -   if `amax` is too close to overflow/underflow, the matrix should be scaled.
*
* @param {string} order - storage layout
* @param {string} uplo - specifies whether upper or lower triangle of `A` is stored ( `upper` or `lower` )
* @param {NonNegativeInteger} N - number of rows/columns in `A`
* @param {Float64Array} AP - array containing the upper or lower triangle of `A` in packed form, expects `N * (  N + 1 ) / 2` indexed elements
* @param {Float64Array} S - array to store the scale factors of `A`, expects `N` indexed elements
* @param {Float64Array} out - array to store the output
* @throws {TypeError} first argument must be a valid order
* @throws {TypeError} second argument must be a valid side
* @throws {RangeError} third argument must be a nonnegative integer
* @returns {integer} status code
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var AP = new Float64Array( [ 1.0, 2.0, 3.0, 5.0, 6.0, 9.0 ] );
* var S = new Float64Array( 3 );
* var out = new Float64Array( 2 );
*
* dppequ( 'row-major', 'lower', 3, AP, S, out );
* // S => <Float64Array>[ 1, ~0.58, ~0.33 ]
* // out => <Float64Array>[ ~0.33, 9 ]
*/
function dppequ( order, uplo, N, AP, S, out ) {
	if ( !isLayout( order ) ) {
		throw new TypeError( format( 'invalid argument. First argument must be a valid order. Value: `%s`.', order ) );
	}
	if ( !isMatrixTriangle( uplo ) ) {
		throw new TypeError( format( 'invalid argument. Second argument must be a valid side. Value: `%s`.', order ) );
	}
	if ( N < 0 ) {
		throw new RangeError( format( 'invalid argument. Third argument must be a nonnegative integer. Value: `%d`.', N ) );
	}
	return base( order, uplo, N, AP, 1, 0, S, 1, 0, out, 1, 0 );
}
 
 
// EXPORTS //
 
module.exports = dppequ;