All files / lapack/base/dppequ/lib base.js

100% Statements 139/139
100% Branches 14/14
100% Functions 1/1
100% Lines 139/139

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 1403x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 50x 50x 50x 50x 50x 50x 50x 50x 50x 2x 2x 2x 2x 48x 48x 48x 48x 48x 48x 48x 48x 50x 24x 48x 24x 24x 24x 24x 48x 48x 48x 48x 48x 24x 24x 48x 24x 24x 24x 24x 48x 48x 48x 48x 48x 24x 48x 48x 50x 24x 48x 24x 24x 24x 24x 24x 24x 24x 24x 24x 72x 72x 72x 24x 24x 24x 24x 24x 24x 50x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var sqrt = require( '@stdlib/math/base/special/sqrt' );
var max = require( '@stdlib/math/base/special/max' );
var min = require( '@stdlib/math/base/special/min' );
 
 
// MAIN //
 
/**
* Computes the row and column scaling factors intended to equilibrate a symmetric positive definite matrix `A` in packed storage and reduce it's condition number (with respect to the two-norm).
*
* ## Notes
*
* -   the function returns `0` if it sucessfully exits.
* -   if the function returns an integer `i` greater then zero then the `i`th diagonal element was non positive.
* -   the first indexed element of `out` represents `scond` and the second indexed elements represents `amax`, if it `scond` >= 0.1 and `amax` is not close to overflow/underflow then it is not worth scaling by `S`.
* -   if `amax` is too close to overflow/underflow, the matrix should be scaled.
*
* @param {string} order - storage layout
* @param {string} uplo - specifies whether upper or lower triangle of `A` is stored ( `upper` or `lower` )
* @param {NonNegativeInteger} N - number of rows/columns in `A`
* @param {Float64Array} AP - array containing the upper or lower triangle of `A` in packed form, expects `N * (  N + 1 ) / 2` indexed elements
* @param {integer} strideAP - stride length for `AP`
* @param {NonNegativeInteger} offsetAP - starting index for `AP`
* @param {Float64Array} S - array to store the scale factors of `A`, expects `N` indexed elements
* @param {integer} strideS - stride length for `S`
* @param {NonNegativeInteger} offsetS - starting index for `S`
* @param {Float64Array} out - array to store the output
* @param {integer} strideOut - stride length for `out`
* @param {NonNegativeInteger} offsetOut - starting index for `out`
* @returns {integer} status code
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var AP = new Float64Array( [ 1.0, 2.0, 3.0, 5.0, 6.0, 9.0 ] );
* var S = new Float64Array( 3 );
* var out = new Float64Array( 2 );
*
* dppequ( 'row-major', 'lower', 3, AP, 1, 0, S, 1, 0, out, 1, 0 );
* // S => <Float64Array>[ 1, ~0.58, ~0.33 ]
* // out => <Float64Array>[ ~0.33, 9 ]
*/
function dppequ( order, uplo, N, AP, strideAP, offsetAP, S, strideS, offsetS, out, strideOut, offsetOut ) { // eslint-disable-line max-len, max-params
	var info;
	var smin;
	var amax;
	var iap;
	var is;
	var i;
 
	if ( N === 0 ) {
		out[ offsetOut ] = 1.0; // scond
		out[ offsetOut + strideOut ] = 0.0; // amax
		return 0; // info
	}
 
	is = offsetS;
	S[ is ] = AP[ offsetAP ];
	smin = S[ is ];
	amax = S[ is ];
 
	is = offsetS + strideS;
	iap = offsetAP;
	if ( uplo === 'upper' ) {
		for ( i = 1; i < N; i++ ) {
			if ( order === 'row-major' ) {
				iap += ( N - i + 1 ) * strideAP;
			} else { // order === 'column-major'
				iap += ( i + 1 ) * strideAP;
			}
			S[ is ] = AP[ iap ];
			smin = min( smin, S[ is ] );
			amax = max( amax, S[ is ] );
			is += strideS;
		}
	} else { // uplo === 'lower'
		for ( i = 1; i < N; i++ ) {
			if ( order === 'row-major' ) {
				iap += ( i + 1 ) * strideAP;
			} else { // order === 'column-major'
				iap += ( N - i + 1 ) * strideAP;
			}
			S[ is ] = AP[ iap ];
			smin = min( smin, S[ is ] );
			amax = max( amax, S[ is ] );
			is += strideS;
		}
	}
 
	is = offsetS;
	if ( smin <= 0.0 ) {
		for ( i = 0; i < N; i++ ) {
			if ( S[ is ] <= 0.0 ) {
				// Leave first element of `out` unchanged
				out[ offsetOut + strideOut ] = amax; // amax
				info = i;
				return info;
			}
			is += strideS;
		}
	} else {
		for ( i = 0; i < N; i++ ) {
			S[ is ] = 1.0 / sqrt( S[ is ] );
			is += strideS;
		}
	}
 
	out[ offsetOut ] = sqrt( smin ) / sqrt( amax ); // scond
	out[ offsetOut + strideOut ] = amax; // amax
	info = 0;
	return info;
}
 
 
// EXPORTS //
 
module.exports = dppequ;