Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 33x 33x 4x 4x 33x 3x 3x 33x 1x 1x 33x 4x 4x 21x 33x 2x 2x 2x 2x 2x | /** * @license Apache-2.0 * * Copyright (c) 2024 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isMatrixTriangle = require( '@stdlib/blas/base/assert/is-matrix-triangle' ); var format = require( '@stdlib/string/format' ); var base = require( './base.js' ); // MAIN // /** * Performs the symmetric rank 1 operation `A = α*x*x^T + A` where `α` is a scalar, `x` is an `N` element vector, and `A` is an `N` by `N` symmetric matrix. * * @param {string} uplo - specifies whether the upper or lower triangular part of the symmetric matrix `A` should be referenced * @param {NonNegativeInteger} N - number of elements along each dimension of `A` * @param {number} alpha - scalar * @param {Float64Array} x - input vector * @param {integer} strideX - `x` stride length * @param {NonNegativeInteger} offsetX - starting index for `x` * @param {Float64Array} A - input matrix * @param {integer} strideA1 - stride of the first dimension of `A` * @param {integer} strideA2 - stride of the second dimension of `A` * @param {NonNegativeInteger} offsetA - starting index for `A` * @throws {TypeError} first argument must specify whether to reference the lower or upper triangular matrix * @throws {RangeError} second argument must be a nonnegative integer * @throws {RangeError} fifth argument must be non-zero * @returns {Float64Array} `A` * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var A = new Float64Array( [ 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 0.0, 0.0, 1.0 ] ); // => [ [ 1.0, 2.0, 3.0 ], [ 0.0, 1.0, 2.0 ], [ 0.0, 0.0, 1.0 ] ] * var x = new Float64Array( [ 1.0, 2.0, 3.0 ] ); * * dsyr( 'upper', 3, 1.0, x, 1, 0, A, 3, 1, 0 ); * // A => <Float64Array>[ 2.0, 4.0, 6.0, 0.0, 5.0, 8.0, 0.0, 0.0, 10.0 ] */ function dsyr( uplo, N, alpha, x, strideX, offsetX, A, strideA1, strideA2, offsetA ) { // eslint-disable-line max-len if ( !isMatrixTriangle( uplo ) ) { throw new TypeError( format( 'invalid argument. First argument must specify whether to reference the lower or upper triangular matrix. Value: `%s`.', uplo ) ); } if ( N < 0 ) { throw new RangeError( format( 'invalid argument. Second argument must be a nonnegative integer. Value: `%d`.', N ) ); } if ( strideX === 0 ) { throw new RangeError( format( 'invalid argument. Fifth argument must be non-zero. Value: `%d`.', strideX ) ); } if ( N === 0 || alpha === 0.0 ) { return A; } return base( uplo, N, alpha, x, strideX, offsetX, A, strideA1, strideA2, offsetA ); // eslint-disable-line max-len } // EXPORTS // module.exports = dsyr; |