All files / stats/base/stdevwd/lib accessors.js

94.02% Statements 63/67
60% Branches 3/5
100% Functions 1/1
94.02% Lines 63/67

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 673x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x     3x     3x 3x 3x 3x 15x 15x 15x 15x 15x 15x 3x 3x 3x 3x 3x 3x
/*
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var sqrt = require( '@stdlib/math/base/special/sqrt' ); // Fixed "req" -> "require"
 
// MAIN //
 
/**
* Computes the standard deviation of a strided array using Welford's algorithm and accessors.
*
* @private
* @param {PositiveInteger} N - number of indexed elements
* @param {number} correction - degrees of freedom adjustment
* @param {Object} x - input array object (with a `get` method)
* @param {integer} stride - stride length
* @param {NonNegativeInteger} offset - starting index
* @returns {number} standard deviation
*/
function stdevwd( N, correction, x, stride, offset ) {
    var delta;
    var mean;
    var M2;
    var ix;
    var v;
    var i;
 
    if ( N <= correction ) {
        return NaN;
    }
    if ( N === 1 ) {
        return 0.0;
    }
    ix = offset;
    mean = 0.0;
    M2 = 0.0;
    for ( i = 0; i < N; i++ ) {
        v = x.get( ix );
        delta = v - mean;
        mean += delta / (i + 1);
        M2 += delta * (v - mean);
        ix += stride;
    }
    return sqrt( M2 / ( N - correction ) );
}
 
// EXPORTS //
 
module.exports = stdevwd;