Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 20x 20x 20x 20x 20x 4x 4x 20x 4x 4x 12x 12x 12x 12x 12x 12x 12x 20x 3x 3x 3x 3x 3x | /** * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var dsumpw = require( '@stdlib/blas/ext/base/dsumpw' ).ndarray; var dapxsumpw = require( '@stdlib/blas/ext/base/dapxsumpw' ).ndarray; // MAIN // /** * Computes the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm. * * ## Method * * - This implementation uses a two-pass approach, as suggested by Neely (1966). * * ## References * * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). * * @param {PositiveInteger} N - number of indexed elements * @param {Float64Array} x - input array * @param {integer} strideX - stride length * @param {NonNegativeInteger} offsetX - starting index * @returns {number} arithmetic mean * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); * * var v = dmeanpn( 4, x, 2, 1 ); * // returns 1.25 */ function dmeanpn( N, x, strideX, offsetX ) { var mu; var c; if ( N <= 0 ) { return NaN; } if ( N === 1 || strideX === 0 ) { return x[ offsetX ]; } // Compute an estimate for the mean: mu = dsumpw( N, x, strideX, offsetX ) / N; // Compute an error term: c = dapxsumpw( N, -mu, x, strideX, offsetX ) / N; return mu + c; } // EXPORTS // module.exports = dmeanpn; |