All files / stats/base/nanmeanors/lib accessors.js

100% Statements 81/81
100% Branches 9/9
100% Functions 1/1
100% Lines 81/81

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 823x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 14x 14x 14x 14x 14x 14x 14x 14x 14x 14x 14x 14x 14x 14x 14x 14x 2x 2x 12x 12x 12x 14x 52x 52x 38x 38x 38x 52x 52x 14x 2x 2x 10x 14x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MAIN //
 
/**
* Computes the arithmetic mean of a strided array, ignoring `NaN` values and using ordinary recursive summation.
*
* @param {PositiveInteger} N - number of indexed elements
* @param {Object} x - input array object
* @param {Collection} x.data - input array data
* @param {Array<Function>} x.accessors - array element accessors
* @param {integer} strideX - stride length
* @param {NonNegativeInteger} offsetX - starting index
* @returns {number} arithmetic mean
*
* @example
* var toAccessorArray = require( '@stdlib/array/base/to-accessor-array' );
* var arraylike2object = require( '@stdlib/array/base/arraylike2object' );
*
* var x = toAccessorArray( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
*
* var v = nanmeanors( 5, arraylike2object( x ), 2, 1 );
* // returns 1.25
*/
function nanmeanors( N, x, strideX, offsetX ) {
	var xget;
	var xbuf;
	var sum;
	var ix;
	var v;
	var n;
	var i;
 
	// Cache references to array data:
	xbuf = x.data;
 
	// Cache references to element accessors:
	xget = x.accessors[ 0 ];
 
	if ( N === 1 || strideX === 0 ) {
		return xget( xbuf, offsetX );
	}
	ix = offsetX;
	sum = 0.0;
	n = 0;
	for ( i = 0; i < N; i++ ) {
		v = xget( xbuf, ix );
		if ( v === v ) {
			sum += v;
			n += 1;
		}
		ix += strideX;
	}
	if ( n === 0 ) {
		return NaN;
	}
	return sum / n;
}
 
 
// EXPORTS //
 
module.exports = nanmeanors;