All files / math/base/special/polygamma/lib atinfinityplus.js

94.36% Statements 134/142
86.2% Branches 25/29
100% Functions 1/1
94.36% Lines 134/142

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 1432x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 4870x 4870x 4870x 4870x 4870x 4870x 4870x 4870x 4870x 4870x 999x 999x 2x 2x 997x 999x 2x 2x 999x 999x 3871x 3871x 3871x 4870x   4866x 3871x 3871x 4866x           4866x 3871x 3871x 3871x 3871x 3871x 4866x     4866x 1022575x 1022575x 1022575x 1022575x 1022575x 3870x 3870x 1018705x 1018705x 1018705x 1018705x 1018705x 1018705x 1018705x 1022575x 1x 1x 1x 1022575x 4866x 1964x 1964x 3870x 4870x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The original C++ code and copyright notice are from the [Boost library]{@link http://www.boost.org/doc/libs/1_65_0/boost/math/special_functions/detail/polygamma.hpp}. The implementation follows the original but has been modified for JavaScript.
*
* ```text
* (C) Copyright Nikhar Agrawal 2013.
* (C) Copyright Christopher Kormanyos 2013.
* (C) Copyright John Maddock 2014.
* (C) Copyright Paul Bristow 2013.
*
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
* ```
*/
 
'use strict';
 
// MODULES //
 
var logger = require( 'debug' );
var bernoulli = require( '@stdlib/math/base/special/bernoulli' );
var factorial = require( '@stdlib/math/base/special/factorial' );
var gammaln = require( '@stdlib/math/base/special/gammaln' );
var abs = require( '@stdlib/math/base/special/abs' );
var exp = require( '@stdlib/math/base/special/exp' );
var pow = require( '@stdlib/math/base/special/pow' );
var ln = require( '@stdlib/math/base/special/ln' );
var MAX_LN = require( '@stdlib/constants/float64/max-ln' );
var LN_TWO = require( '@stdlib/constants/float64/ln-two' );
var EPS = require( '@stdlib/constants/float64/eps' );
 
 
// VARIABLES //
 
var debug = logger( 'polygamma' );
var MAX_SERIES_ITERATIONS = 1000000;
var MAX_FACTORIAL = 172;
 
 
// MAIN //
 
/**
* Evaluates the polygamma function for large values of `x` such as for `x > 400`.
*
* @private
* @param {PositiveInteger} n - derivative to evaluate
* @param {number} x - input
* @returns {number} (n+1)'th derivative
* @see {@link http://functions.wolfram.com/GammaBetaErf/PolyGamma2/06/02/0001/}
*/
function atinfinityplus( n, x ) {
	var partTerm; // Value of current term excluding the Bernoulli number part
	var xsquared;
	var term; // Value of current term to be added to sum
	var sum; // Current value of accumulated sum
	var nlx;
	var k2;
	var k;
 
	if ( n+x === x ) {
		// If `x` is very large, just concentrate on the first part of the expression and use logs:
		if ( n === 1 ) {
			return 1.0 / x;
		}
		nlx = n * ln( x );
		if ( nlx < MAX_LN && n < MAX_FACTORIAL ) {
			return ( (n & 1) ? 1.0 : -1.0 ) * factorial( n-1 ) * pow( x, -n );
		}
		return ( (n & 1) ? 1.0 : -1.0 ) * exp( gammaln( n ) - ( n*ln(x) ) );
	}
	xsquared = x * x;
 
	// Start by setting `partTerm` to `(n-1)! / x^(n+1)`, which is common to both the first term of the series (with k = 1) and to the leading part. We can then get to the leading term by: `partTerm * (n + 2 * x) / 2` and to the first term in the series (excluding the Bernoulli number) by: `partTerm n * (n + 1) / (2x)`. If either the factorial would over- or the power term underflow, set `partTerm` to 0 and then we know that we have to use logs for the initial terms:
	if ( n > MAX_FACTORIAL && n*n > MAX_LN ) {
		partTerm = 0.0;
	} else {
		partTerm = factorial( n-1 ) * pow( x, -n-1 );
	}
	if ( partTerm === 0.0 ) {
		// Either `n` is very large, or the power term underflows. Set the initial values of `partTerm`, `term`, and `sum` via logs:
		partTerm = gammaln(n) - ( (n+1) * ln(x) );
		sum = exp( partTerm + ln( n + (2.0*x) ) - LN_TWO );
		partTerm += ln( n*(n+1) ) - LN_TWO - ln(x);
		partTerm = exp( partTerm );
	} else {
		sum = partTerm * ( n+(2.0*x) ) / 2.0;
		partTerm *= ( n*(n+1) ) / 2.0;
		partTerm /= x;
	}
	// If the leading term is 0, so is the result:
	if ( sum === 0.0 ) {
		return sum;
	}
	for ( k = 1; ; ) {
		term = partTerm * bernoulli( k*2 );
		sum += term;
 
		// Normal termination condition:
		if ( abs( term/sum ) < EPS ) {
			break;
		}
 
		// Increment our counter, and move `partTerm` on to the next value:
		k += 1;
		k2 = 2 * k;
		partTerm *= ( n+k2-2 ) * ( n-1+k2 );
		partTerm /= ( k2-1 ) * k2;
		partTerm /= xsquared;
		if ( k > MAX_SERIES_ITERATIONS ) {
			debug( 'Series did not converge, closest value was: %d.', sum );
			return NaN;
		}
	}
	if ( ( n-1 ) & 1 ) {
		sum = -sum;
	}
	return sum;
}
 
 
// EXPORTS //
 
module.exports = atinfinityplus;