Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 38x 38x 3x 3x 38x 3x 3x 38x 1x 1x 38x 1x 1x 30x 38x 6x 6x 24x 38x 2x 2x 2x 2x 2x | /** * @license Apache-2.0 * * Copyright (c) 2024 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var format = require( '@stdlib/string/format' ); var base = require( './base.js' ); // MAIN // /** * Performs the rank 1 operation `A = α*x*y^T + A`, where `α` is a scalar, `x` is an `M` element vector, `y` is an `N` element vector and `A` is an `M` by `N` matrix. * * @param {NonNegativeInteger} M - number of rows in the matrix `A` * @param {NonNegativeInteger} N - number of columns in the matrix `A` * @param {number} alpha - scalar constant * @param {Float64Array} x - first input vector * @param {integer} strideX - `x` stride length * @param {NonNegativeInteger} offsetX - starting index for `x` * @param {Float64Array} y - second input vector * @param {integer} strideY - `y` stride length * @param {NonNegativeInteger} offsetY - starting index for `y` * @param {Float64Array} A - input matrix * @param {integer} strideA1 - stride of the first dimension of `A` * @param {integer} strideA2 - stride of the second dimension of `A` * @param {NonNegativeInteger} offsetA - starting index for `A` * @throws {RangeError} first argument must be a nonnegative integer * @throws {RangeError} second argument must be a nonnegative integer * @throws {RangeError} fifth argument must be non-zero * @throws {RangeError} eighth argument must be non-zero * @returns {Float64Array} `A` * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); * var x = new Float64Array( [ 1.0, 1.0 ] ); * var y = new Float64Array( [ 1.0, 1.0, 1.0 ] ); * * dger( 2, 3, 1.0, x, 1, 0, y, 1, 0, A, 3, 1, 0 ); * // A => <Float64Array>[ 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 ] */ function dger( M, N, alpha, x, strideX, offsetX, y, strideY, offsetY, A, strideA1, strideA2, offsetA ) { // eslint-disable-line max-params, max-len if ( M < 0 ) { throw new RangeError( format( 'invalid argument. First argument must be a nonnegative integer. Value: `%d`.', M ) ); } if ( N < 0 ) { throw new RangeError( format( 'invalid argument. Second argument must be a nonnegative integer. Value: `%d`.', N ) ); } if ( strideX === 0 ) { throw new RangeError( format( 'invalid argument. Fifth argument must be non-zero.' ) ); } if ( strideY === 0 ) { throw new RangeError( format( 'invalid argument. Eighth argument must be non-zero.' ) ); } // Check if we can early return... if ( M === 0 || N === 0 || alpha === 0.0 ) { return A; } return base( M, N, alpha, x, strideX, offsetX, y, strideY, offsetY, A, strideA1, strideA2, offsetA ); // eslint-disable-line max-len } // EXPORTS // module.exports = dger; |