All files / stats/incr/nanmvmr/lib main.js

100% Statements 170/170
100% Branches 10/10
100% Functions 2/2
100% Lines 170/170

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 1711x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 46x 46x 46x 46x 46x 27x 46x 19x 19x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 380x 84x 84x 380x 264x 264x 32x 32x 380x 46x 1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var incrmvmr = require( '@stdlib/stats/incr/mvmr' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
 
 
// MAIN //
 
/**
* Returns an accumulator function which incrementally computes a moving variance-to-mean ratio (VMR) while ignoring NaN values.
*
* ## Method
*
* -   Let \\(W\\) be a window of \\(N\\) elements over which we want to compute a variance-to-mean ratio (VMR).
*
* -   The difference between the unbiased sample variance in a window \\(W_i\\) and the unbiased sample variance in a window \\(W_{i+1})\\) is given by
*
*     ```tex
*     \Delta s^2 = s_{i+1}^2 - s_{i}^2
*     ```
*
* -   If we multiply both sides by \\(N-1\\),
*
*     ```tex
*     (N-1)(\Delta s^2) = (N-1)s_{i+1}^2 - (N-1)s_{i}^2
*     ```
*
* -   If we substitute the definition of the unbiased sample variance having the form
*
*     ```tex
*     \begin{align*}
*     s^2 &= \frac{1}{N-1} \biggl( \sum_{i=1}^{N} (x_i - \bar{x})^2 \biggr) \\
*         &= \frac{1}{N-1} \biggl( \sum_{i=1}^{N} (x_i^2 - 2\bar{x}x_i + \bar{x}^2) \biggr) \\
*         &= \frac{1}{N-1} \biggl( \sum_{i=1}^{N} x_i^2 - 2\bar{x} \sum_{i=1}^{N} x_i + \sum_{i=1}^{N} \bar{x}^2) \biggr) \\
*         &= \frac{1}{N-1} \biggl( \sum_{i=1}^{N} x_i^2 - \frac{2N\bar{x}\sum_{i=1}^{N} x_i}{N} + N\bar{x}^2 \biggr) \\
*         &= \frac{1}{N-1} \biggl( \sum_{i=1}^{N} x_i^2 - 2N\bar{x}^2 + N\bar{x}^2 \biggr) \\
*         &= \frac{1}{N-1} \biggl( \sum_{i=1}^{N} x_i^2 - N\bar{x}^2 \biggr)
*     \end{align*}
*     ```
*
*     we return
*
*     ```tex
*     (N-1)(\Delta s^2) = \biggl(\sum_{k=1}^N x_k^2 - N\bar{x}_{i+1}^2 \biggr) - \biggl(\sum_{k=0}^{N-1} x_k^2 - N\bar{x}_{i}^2 \biggr)
*     ```
*
* -   This can be further simplified by recognizing that subtracting the sums reduces to \\(x_N^2 - x_0^2\\); in which case,
*
*     ```tex
*     \begin{align*}
*     (N-1)(\Delta s^2) &= x_N^2 - x_0^2 - N\bar{x}_{i+1}^2 + N\bar{x}_{i}^2 \\
*     &= x_N^2 - x_0^2 - N(\bar{x}_{i+1}^2 - \bar{x}_{i}^2) \\
*     &= x_N^2 - x_0^2 - N(\bar{x}_{i+1} - \bar{x}_{i})(\bar{x}_{i+1} + \bar{x}_{i})
*     \end{align*}
*     ```
*
* -   Recognizing that the difference of means can be expressed
*
*     ```tex
*     \bar{x}_{i+1} - \bar{x}_i = \frac{1}{N} \biggl( \sum_{k=1}^N x_k - \sum_{k=0}^{N-1} x_k \biggr) = \frac{x_N - x_0}{N}
*     ```
*
*     and substituting into the equation above
*
*     ```tex
*     (N-1)(\Delta s^2) = x_N^2 - x_0^2 - (x_N - x_0)(\bar{x}_{i+1} + \bar{x}_{i})
*     ```
*
* -   Rearranging terms gives us the update equation for the unbiased sample variance
*
*     ```tex
*     \begin{align*}
*     (N-1)(\Delta s^2) &= (x_N - x_0)(x_N + x_0) - (x_N - x_0)(\bar{x}_{i+1} + \bar{x}_{i}) \\
*     &= (x_N - x_0)(x_N + x_0 - \bar{x}_{i+1} - \bar{x}_{i}) \\
*     &= (x_N - x_0)(x_N - \bar{x}_{i+1} + x_0 - \bar{x}_{i})
*     \end{align*}
*     ```
*
* @param {PositiveInteger} W - window size
* @param {number} [mean] - mean value
* @throws {TypeError} first argument must be a positive integer
* @throws {TypeError} second argument must be a number
* @returns {Function} accumulator function
*
* @example
* var accumulator = incrnanmvmr( 3 );
*
* var F = accumulator();
* // returns null
*
* F = accumulator( 2.0 );
* // returns 0.0
*
* F = accumulator( NaN );
* // returns 0.0
*
* F = accumulator( 1.0 );
* // returns ~0.33
*
* F = accumulator( 3.0 );
* // returns 0.5
*
* F = accumulator( NaN );
* // returns 0.5
*
* F = accumulator( 7.0 );
* // returns ~2.55
*
* F = accumulator();
* // returns ~2.55
*
* @example
* var accumulator = incrnanmvmr( 3, 2.0 );
*/
function incrnanmvmr( W, mean ) {
	var acc;
 
	// Initialize the wrapped accumulator:
	if ( arguments.length > 1 ) {
		acc = incrmvmr( W, mean );
	} else {
		acc = incrmvmr( W );
	}
 
	return accumulator;
 
	/**
	* If provided a value, the accumulator function returns an updated accumulated value. If not provided a value, the accumulator function returns the current accumulated value.
	* NaN input values are ignored.
	*
	* @private
	* @param {number} [x] - input value
	* @returns {(number|null)} accumulated value or null
	*/
	function accumulator( x ) {
		if ( arguments.length === 0 ) {
			return acc();
		}
		if ( isnan( x ) === false ) {
			return acc( x );
		}
 
		return acc();
	}
}
 
 
// EXPORTS //
 
module.exports = incrnanmvmr;