Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 27x 27x 27x 21x 27x 6x 6x 11x 11x 11x 11x 11x 11x 11x 11x 11x 11x 11x 46x 18x 18x 28x 46x 27x 1x 1x 1x 1x 1x | /**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var isNumber = require( '@stdlib/assert/is-number' ).isPrimitive;
var incrpcorrdist = require( '@stdlib/stats/incr/pcorrdist' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
// MAIN //
/**
* Returns an accumulator function which incrementally computes a sample Pearson product-moment correlation distance, ignoring `NaN` value.
*
* ## Method
*
* - The sample Pearson product-moment correlation distance is defined as
*
* ```tex
* d = 1 - r = 1 - \frac{\operatorname{cov}_n(x,y)}{\sigma_x \sigma_y}
* ```
*
* - The implementation thus computes the sample Pearson product-moment correlation coefficient \\(r\\) and subtracts the coefficient from 1.
*
* @param {number} [meanx] - mean value
* @param {number} [meany] - mean value
* @throws {TypeError} first argument must be a number
* @throws {TypeError} second argument must be a number
* @returns {Function} accumulator function
*
* @example
* var accumulator = incrnanpcorrdist();
*
* var d = accumulator();
* // returns null
*
* d = accumulator( 2.0, 1.0 );
* // returns 1.0
*
* d = accumulator( NaN, 1.0 );
* // returns 1.0
*
* d = accumulator( -5.0, 3.14 );
* // returns ~2.0
*
* d = accumulator( -5.0, NaN );
* // returns ~2.0
*
* d = accumulator();
* // returns ~2.0
*
* @example
* var accumulator = incrnanpcorrdist( 2.0, -3.0 );
*/
function incrnanpcorrdist( meanx, meany ) {
var pcorrdist;
if ( arguments.length > 0 ) {
pcorrdist = incrpcorrdist( meanx, meany );
} else {
pcorrdist = incrpcorrdist();
}
return accumulator;
/**
* If provided input values, the accumulator function returns an updated sample correlation distance. If not provided input values, the accumulator function returns the current sample correlation distance.
*
* @private
* @param {number} [x] - new value
* @param {number} [y] - new value
* @returns {(number|null)} sample correlation distance or null
*/
function accumulator( x, y ) {
if ( arguments.length === 0 || isnan( x ) || !isNumber( x ) || isnan( y ) || !isNumber( y ) ) {
return pcorrdist();
}
return pcorrdist( x, y );
}
}
// EXPORTS //
module.exports = incrnanpcorrdist;
|