All files / stats/base/nanvariancepn/lib ndarray.js

100% Statements 119/119
100% Branches 17/17
100% Functions 1/1
100% Lines 119/119

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 1203x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 110x 110x 110x 110x 110x 110x 110x 110x 110x 110x 110x 110x 110x 4x 4x 106x 110x 44x 44x 110x 22x 22x 6x 6x 16x 16x 40x 40x 40x 40x 40x 40x 110x 18x 18x 22x 22x 22x 22x 22x 22x 110x 6110x 6110x 6074x 6074x 6074x 6074x 6110x 6110x 22x 110x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var arraylike2object = require( '@stdlib/array/base/arraylike2object' );
var accessors = require( './accessors.js' );
var nansumpw = require( './nansumpw.js' );
 
 
// VARIABLES //
 
var WORKSPACE = [ 0.0, 0 ];
 
 
// MAIN //
 
/**
* Computes the variance of a strided array ignoring `NaN` values and using a two-pass algorithm.
*
* ## Method
*
* -   This implementation uses a two-pass approach, as suggested by Neely (1966).
*
* ## References
*
* -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
* -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
*
* @param {PositiveInteger} N - number of indexed elements
* @param {number} correction - degrees of freedom adjustment
* @param {NumericArray} x - input array
* @param {integer} strideX - stride length
* @param {NonNegativeInteger} offsetX - starting index
* @returns {number} variance
*
* @example
* var floor = require( '@stdlib/math/base/special/floor' );
*
* var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ];
* var N = floor( x.length / 2 );
*
* var v = nanvariancepn( N, 1, x, 2, 1 );
* // returns 6.25
*/
function nanvariancepn( N, correction, x, strideX, offsetX ) {
	var mu;
	var ix;
	var M2;
	var nc;
	var o;
	var M;
	var d;
	var v;
	var n;
	var i;
 
	if ( N <= 0 ) {
		return NaN;
	}
	o = arraylike2object( x );
	if ( o.accessorProtocol ) {
		return accessors( N, correction, o, strideX, offsetX );
	}
	if ( N === 1 || strideX === 0 ) {
		v = x[ offsetX ];
		if ( v === v && N-correction > 0.0 ) {
			return 0.0;
		}
		return NaN;
	}
	// Compute an estimate for the mean...
	WORKSPACE[ 0 ] = 0.0;
	WORKSPACE[ 1 ] = 0;
	nansumpw( N, WORKSPACE, o, strideX, offsetX );
	n = WORKSPACE[ 1 ];
	nc = n - correction;
	if ( nc <= 0.0 ) {
		return NaN;
	}
	mu = WORKSPACE[ 0 ] / n;
 
	// Compute the variance...
	ix = offsetX;
	M2 = 0.0;
	M = 0.0;
	for ( i = 0; i < N; i++ ) {
		v = x[ ix ];
		if ( v === v ) {
			d = v - mu;
			M2 += d * d;
			M += d;
		}
		ix += strideX;
	}
	return (M2/nc) - ((M/n)*(M/nc));
}
 
 
// EXPORTS //
 
module.exports = nanvariancepn;