Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x | /** * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; /** * Compute the variance of a strided array ignoring `NaN` values and using a two-pass algorithm. * * @module @stdlib/stats/base/nanvariancepn * * @example * var nanvariancepn = require( '@stdlib/stats/base/nanvariancepn' ); * * var x = [ 1.0, -2.0, NaN, 2.0 ]; * * var v = nanvariancepn( x.length, 1, x, 1 ); * // returns ~4.3333 * * @example * var floor = require( '@stdlib/math/base/special/floor' ); * var nanvariancepn = require( '@stdlib/stats/base/nanvariancepn' ); * * var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ]; * var N = floor( x.length / 2 ); * * var v = nanvariancepn.ndarray( N, 1, x, 2, 1 ); * // returns 6.25 */ // MODULES // var main = require( './main.js' ); // EXPORTS // module.exports = main; // exports: { "ndarray": "main.ndarray" } |