All files / stats/base/nanvariancech/lib ndarray.js

100% Statements 123/123
100% Branches 23/23
100% Functions 1/1
100% Lines 123/123

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 1243x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 113x 113x 113x 113x 113x 113x 113x 113x 113x 113x 113x 113x 113x 8x 8x 105x 113x 43x 43x 113x 22x 22x 6x 6x 16x 16x 40x 40x 40x 113x 4076x 4076x 28x 28x 28x 4048x 4048x 113x 12x 12x 28x 28x 28x 28x 28x 28x 28x 113x 6106x 6106x 6068x 6068x 6068x 6068x 6068x 6106x 6106x 28x 113x 6x 6x 22x 113x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var arraylike2object = require( '@stdlib/array/base/arraylike2object' );
var accessors = require( './accessors.js' );
 
 
// MAIN //
 
/**
* Computes the variance of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
*
* ## Method
*
* -   This implementation uses a one-pass trial mean approach, as suggested by Chan et al (1983).
*
* ## References
*
* -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
* -   Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154](https://doi.org/10.2307/2286154).
* -   Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. "Algorithms for Computing the Sample Variance: Analysis and Recommendations." _The American Statistician_ 37 (3). American Statistical Association, Taylor & Francis, Ltd.: 242–47. doi:[10.1080/00031305.1983.10483115](https://doi.org/10.1080/00031305.1983.10483115).
* -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
*
* @param {PositiveInteger} N - number of indexed elements
* @param {number} correction - degrees of freedom adjustment
* @param {NumericArray} x - input array
* @param {integer} strideX - stride length
* @param {NonNegativeInteger} offsetX - starting index
* @returns {number} variance
*
* @example
* var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ];
*
* var v = nanvariancech( 5, 1, x, 2, 1 );
* // returns 6.25
*/
function nanvariancech( N, correction, x, strideX, offsetX ) {
	var mu;
	var ix;
	var M2;
	var nc;
	var M;
	var d;
	var v;
	var n;
	var i;
	var o;
 
	if ( N <= 0 ) {
		return NaN;
	}
	o = arraylike2object( x );
	if ( o.accessorProtocol ) {
		return accessors( N, correction, o, strideX, offsetX );
	}
	if ( N === 1 || strideX === 0 ) {
		v = x[ offsetX ];
		if ( v === v && N-correction > 0.0 ) {
			return 0.0;
		}
		return NaN;
	}
	ix = offsetX;
 
	// Find an estimate for the mean...
	for ( i = 0; i < N; i++ ) {
		v = x[ ix ];
		if ( v === v ) {
			mu = v;
			break;
		}
		ix += strideX;
	}
	if ( i === N ) {
		return NaN;
	}
	ix += strideX;
	i += 1;
 
	// Compute the variance...
	M2 = 0.0;
	M = 0.0;
	n = 1;
	for ( i; i < N; i++ ) {
		v = x[ ix ];
		if ( v === v ) {
			d = v - mu;
			M2 += d * d;
			M += d;
			n += 1;
		}
		ix += strideX;
	}
	nc = n - correction;
	if ( nc <= 0.0 ) {
		return NaN;
	}
	return (M2/nc) - ((M/n)*(M/nc));
}
 
 
// EXPORTS //
 
module.exports = nanvariancech;