All files / stats/base/nanvariancech/lib accessors.js

100% Statements 122/122
100% Branches 19/19
100% Functions 1/1
100% Lines 122/122

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 1233x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 43x 43x 43x 43x 43x 43x 43x 43x 43x 43x 43x 43x 43x 43x 43x 43x 43x 43x 43x 43x 8x 8x 2x 2x 6x 6x 35x 35x 35x 43x 4071x 4071x 23x 23x 23x 4048x 4048x 43x 12x 12x 23x 23x 23x 23x 23x 23x 23x 43x 6086x 6086x 6049x 6049x 6049x 6049x 6049x 6086x 6086x 23x 43x 2x 2x 21x 43x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MAIN //
 
/**
* Computes the variance of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
*
* ## Method
*
* -   This implementation uses a one-pass trial mean approach, as suggested by Chan et al (1983).
*
* ## References
*
* -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
* -   Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154](https://doi.org/10.2307/2286154).
* -   Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. "Algorithms for Computing the Sample Variance: Analysis and Recommendations." _The American Statistician_ 37 (3). American Statistical Association, Taylor & Francis, Ltd.: 242–47. doi:[10.1080/00031305.1983.10483115](https://doi.org/10.1080/00031305.1983.10483115).
* -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
*
* @param {PositiveInteger} N - number of indexed elements
* @param {number} correction - degrees of freedom adjustment
* @param {Object} x - input array object
* @param {Collection} x.data - input array data
* @param {Array<Function>} x.accessors - array element accessors
* @param {integer} strideX - stride length
* @param {NonNegativeInteger} offsetX - starting index
* @returns {number} variance
*
* @example
* var arraylike2object = require( '@stdlib/array/base/arraylike2object' );
* var toAccessorArray = require( '@stdlib/array/base/to-accessor-array' );
*
* var x = toAccessorArray( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
*
* var v = nanvariancech( 5, 1, arraylike2object( x ), 2, 1 );
* // returns 6.25
*/
function nanvariancech( N, correction, x, strideX, offsetX ) {
	var xget;
	var xbuf;
	var mu;
	var ix;
	var M2;
	var nc;
	var M;
	var d;
	var v;
	var n;
	var i;
 
	// Cache references to array data:
	xbuf = x.data;
 
	// Cache references to element accessors:
	xget = x.accessors[ 0 ];
 
	if ( N === 1 || strideX === 0 ) {
		v = xget( xbuf, offsetX );
		if ( v === v && N-correction > 0.0 ) {
			return 0.0;
		}
		return NaN;
	}
	ix = offsetX;
 
	// Find an estimate for the mean...
	for ( i = 0; i < N; i++ ) {
		v = xget( xbuf, ix );
		if ( v === v ) {
			mu = v;
			break;
		}
		ix += strideX;
	}
	if ( i === N ) {
		return NaN;
	}
	ix += strideX;
	i += 1;
 
	// Compute the variance...
	M2 = 0.0;
	M = 0.0;
	n = 1;
	for ( i; i < N; i++ ) {
		v = xget( xbuf, ix );
		if ( v === v ) {
			d = v - mu;
			M2 += d * d;
			M += d;
			n += 1;
		}
		ix += strideX;
	}
	nc = n - correction;
	if ( nc <= 0.0 ) {
		return NaN;
	}
	return (M2/nc) - ((M/n)*(M/nc));
}
 
 
// EXPORTS //
 
module.exports = nanvariancech;