Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 65x 65x 11x 11x 65x 20x 20x 34x 34x 34x 34x 34x 34x 34x 34x 65x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 8x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 41x 7x 7x 7x 7x 7x 7x | /** * @license Apache-2.0 * * Copyright (c) 2025 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* eslint-disable no-restricted-syntax, no-invalid-this */ 'use strict'; // MODULES // var isWebAssemblyMemory = require( '@stdlib/assert/is-wasm-memory' ); var setReadOnly = require( '@stdlib/utils/define-nonenumerable-read-only-property' ); var inherits = require( '@stdlib/utils/inherit' ); var WasmModule = require( '@stdlib/wasm/module-wrapper' ); var format = require( '@stdlib/string/format' ); var wasmBinary = require( './binary.js' ); // MAIN // /** * BLAS routine WebAssembly module wrapper constructor. * * @constructor * @param {Object} memory - WebAssembly memory instance * @throws {TypeError} must provide a WebAssembly memory instance * @returns {Module} module instance * * @example * var Memory = require( '@stdlib/wasm/memory' ); * var oneTo = require( '@stdlib/array/one-to' ); * * // Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB): * var mem = new Memory({ * 'initial': 10, * 'maximum': 100 * }); * * // Create a BLAS routine: * var dnanasumors = new Module( mem ); * // returns <Module> * * // Initialize the routine: * dnanasumors.initializeSync(); * * // Define a vector data type: * var dtype = 'float64'; * * // Specify a vector length: * var N = 3; * * // Define a pointer (i.e., byte offset) for storing the input vector: * var xptr = 0; * * // Write vector values to module memory: * dnanasumors.write( xptr, oneTo( N, dtype ) ); * * // Perform computation: * var v = dnanasumors.main( N, xptr, 1 ); * // returns 6.0 */ function Module( memory ) { if ( !( this instanceof Module ) ) { return new Module( memory ); } if ( !isWebAssemblyMemory( memory ) ) { throw new TypeError( format( 'invalid argument. Must provide a WebAssembly memory instance. Value: `%s`.', memory ) ); } // Call the parent constructor: WasmModule.call( this, wasmBinary, memory, { 'env': { 'memory': memory } }); return this; } // Inherit from the parent constructor: inherits( Module, WasmModule ); /** * Compute the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring `NaN` values and using ordinary recursive summation. * * @name main * @memberof Module.prototype * @readonly * @type {Function} * @param {PositiveInteger} N - number of indexed elements * @param {NonNegativeInteger} xptr - input array pointer (i.e., byte offset) * @param {integer} strideX - stride length * @returns {number} sum * * @example * var Memory = require( '@stdlib/wasm/memory' ); * var oneTo = require( '@stdlib/array/one-to' ); * * // Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB): * var mem = new Memory({ * 'initial': 10, * 'maximum': 100 * }); * * // Create a BLAS routine: * var dnanasumors = new Module( mem ); * // returns <Module> * * // Initialize the routine: * dnanasumors.initializeSync(); * * // Define a vector data type: * var dtype = 'float64'; * * // Specify a vector length: * var N = 3; * * // Define a pointer (i.e., byte offset) for storing the input vector: * var xptr = 0; * * // Write vector values to module memory: * dnanasumors.write( xptr, oneTo( N, dtype ) ); * * // Perform computation: * var v = dnanasumors.main( N, xptr, 1 ); * // returns 6.0 */ setReadOnly( Module.prototype, 'main', function dnanasumors( N, xptr, strideX ) { return this._instance.exports.stdlib_strided_dnanasumors( N, xptr, strideX ); // eslint-disable-line max-len }); /** * Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring `NaN` values and using ordinary recursive summation and alternative indexing semantics. * * @name ndarray * @memberof Module.prototype * @readonly * @type {Function} * @param {PositiveInteger} N - number of indexed elements * @param {NonNegativeInteger} xptr - input array pointer (i.e., byte offset) * @param {integer} strideX - stride length * @param {NonNegativeInteger} offsetX - starting index * @returns {number} sum * * @example * var Memory = require( '@stdlib/wasm/memory' ); * var oneTo = require( '@stdlib/array/one-to' ); * * // Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB): * var mem = new Memory({ * 'initial': 10, * 'maximum': 100 * }); * * // Create a BLAS routine: * var dnanasumors = new Module( mem ); * // returns <Module> * * // Initialize the routine: * dnanasumors.initializeSync(); * * // Define a vector data type: * var dtype = 'float64'; * * // Specify a vector length: * var N = 3; * * // Define a pointer (i.e., byte offset) for storing the input vector: * var xptr = 0; * * // Write vector values to module memory: * dnanasumors.write( xptr, oneTo( N, dtype ) ); * * // Perform computation: * var v = dnanasumors.ndarray( N, xptr, 1, 0 ); * // returns 6.0 */ setReadOnly( Module.prototype, 'ndarray', function dnanasumors( N, xptr, strideX, offsetX ) { return this._instance.exports.stdlib_strided_dnanasumors_ndarray( N, xptr, strideX, offsetX ); // eslint-disable-line max-len }); // EXPORTS // module.exports = Module; |