All files / stats/incr/nanpcorr/lib main.js

100% Statements 205/205
100% Branches 13/13
100% Functions 2/2
100% Lines 205/205

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 2061x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 25x 25x 25x 25x 25x 20x 25x 5x 5x 9x 9x 9x 9x 9x 9x 9x 9x 9x 9x 9x 9x 9x 9x 40x 8x 2x 2x 6x 6x 40x 10x 10x 22x 22x 40x 25x 1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var incrpcorr = require( '@stdlib/stats/incr/pcorr' );
 
 
// MAIN //
 
/**
* Returns an accumulator function which incrementally computes a sample Pearson product-moment correlation coefficient, ignoring `NaN` values.
*
* ## Method
*
* -   We begin by defining the co-moment \\(C_n\\)
*
*     ```tex
*     C_n = \sum_{i=1}^{n} ( x_i - \bar{x}_n ) ( y_i - \bar{y}_n )
*     ```
*
*     where \\(\bar{x}_n\\) and \\(\bar{y}_n\\) are the sample means for \\(x\\) and \\(y\\), respectively.
*
* -   Based on Welford's method, we know the update formulas for the sample means are given by
*
*     ```tex
*     \bar{x}_n = \bar{x}_{n-1} + \frac{x_n - \bar{x}_{n-1}}{n}
*     ```
*
*     and
*
*     ```tex
*     \bar{y}_n = \bar{y}_{n-1} + \frac{y_n - \bar{y}_{n-1}}{n}
*     ```
*
* -   Substituting into the equation for \\(C_n\\) and rearranging terms
*
*     ```tex
*     C_n = C_{n-1} + (x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})
*     ```
*
*     where the apparent asymmetry arises from
*
*     ```tex
*     x_n - \bar{x}_n = \frac{n-1}{n} (x_n - \bar{x}_{n-1})
*     ```
*
*     and, hence, the update term can be equivalently expressed
*
*     ```tex
*     \frac{n-1}{n} (x_n - \bar{x}_{n-1}) (y_n - \bar{y}_{n-1})
*     ```
*
* -   The covariance can be defined
*
*     ```tex
*     \begin{align*}
*     \operatorname{cov}_n(x,y) &= \frac{C_n}{n} \\
*     &= \frac{C_{n-1} + (x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})}{n} \\
*     &= \frac{(n-1)\operatorname{cov}_{n-1}(x,y) + (x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})}{n}
*     \end{align*}
*     ```
*
* -   Applying Bessel's correction, we arrive at an update formula for calculating an unbiased sample covariance
*
*     ```tex
*     \begin{align*}
*     \operatorname{cov}_n(x,y) &= \frac{n}{n-1}\cdot\frac{(n-1)\operatorname{cov}_{n-1}(x,y) + (x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})}{n} \\
*     &= \operatorname{cov}_{n-1}(x,y) + \frac{(x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})}{n-1} \\
*     &= \frac{C_{n-1} + (x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})}{n-1}
*     &= \frac{C_{n-1} + (x_n - \bar{x}_{n-1}) (y_n - \bar{y}_n)}{n-1}
*     \end{align*}
*     ```
*
* -   To calculate the corrected sample standard deviation, we can use Welford's method, which can be derived as follows. We can express the variance as
*
*     ```tex
*     \begin{align*}
*     S_n &= n \sigma_n^2 \\
*         &= \sum_{i=1}^{n} (x_i - \mu_n)^2 \\
*         &= \biggl(\sum_{i=1}^{n} x_i^2 \biggr) - n\mu_n^2
*     \end{align*}
*     ```
*
*     Accordingly,
*
*     ```tex
*     \begin{align*}
*     S_n - S_{n-1} &= \sum_{i=1}^{n} x_i^2 - n\mu_n^2 - \sum_{i=1}^{n-1} x_i^2 + (n-1)\mu_{n-1}^2 \\
*                   &= x_n^2 - n\mu_n^2 + (n-1)\mu_{n-1}^2 \\
*                   &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1}^2 - \mu_n^2) \\
*                   &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1} - \mu_n)(\mu_{n-1} + \mu_n) \\
*                   &= x_n^2 - \mu_{n-1}^2 + (\mu_{n-1} - x_n)(\mu_{n-1} + \mu_n) \\
*                   &= x_n^2 - \mu_{n-1}^2 + \mu_{n-1}^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
*                   &= x_n^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
*                   &= (x_n - \mu_{n-1})(x_n - \mu_n) \\
*                   &= S_{n-1} + (x_n - \mu_{n-1})(x_n - \mu_n)
*     \end{align*}
*     ```
*
*     where we use the identity
*
*     ```tex
*     x_n - \mu_{n-1} = n (\mu_n - \mu_{n-1})
*     ```
*
* -   To compute the corrected sample standard deviation, we apply Bessel's correction and take the square root.
*
* -   The sample Pearson product-moment correlation coefficient can thus be calculated as
*
*     ```tex
*     r = \frac{\operatorname{cov}_n(x,y)}{\sigma_x \sigma_y}
*     ```
*
*     where \\(\sigma_x\\) and \\(\sigma_y\\) are the corrected sample standard deviations for \\(x\\) and \\(y\\), respectively.
*
* @param {number} [meanx] - mean value
* @param {number} [meany] - mean value
* @throws {TypeError} first argument must be a number
* @throws {TypeError} second argument must be a number
* @returns {Function} accumulator function
*
* @example
* var accumulator = incrnanpcorr();
*
* var r = accumulator();
* // returns null
*
* r = accumulator( 2.0, 1.0 );
* // returns 0.0
*
* r = accumulator( -5.0, NaN );
* // returns 0.0
*
* r = accumulator( -5.0, 3.14 );
* // returns ~-1.0
*
* r = accumulator( NaN, 3.14 );
* // returns ~-1.0
*
* r = accumulator();
* // returns ~-1.0
*
* @example
* var accumulator = incrpcorr( 2.0, -3.0 );
*/
function incrnanpcorr( meanx, meany ) {
	var pcorr;
	var N;
 
	if ( arguments.length ) {
		pcorr = incrpcorr( meanx, meany );
	} else {
		pcorr = incrpcorr();
	}
 
	N = 0;
 
	return accumulator;
 
	/**
	* Accumulator function that updates the sample correlation coefficient, ignoring `NaN` values.
	*
	* @private
	* @param {number} [x] - new value
	* @param {number} [y] - new value
	* @returns {(number|null)} sample absolute correlation coefficient or null
	*/
	function accumulator( x, y ) {
		if ( arguments.length === 0 ) {
			if ( N === 0 ) {
				return null;
			}
			return pcorr();
		}
		if ( isnan( x ) || isnan( y ) ) {
			return pcorr();
		}
		N += 1;
		return pcorr( x, y );
	}
}
 
 
// EXPORTS //
 
module.exports = incrnanpcorr;