All files / stats/fligner-test/lib main.js

100% Statements 174/174
100% Branches 30/30
100% Functions 1/1
100% Lines 174/174

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 1751x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 31x 15x 15x 15x 15x 8x 8x 15x 31x 3x 3x 3x 3x 3x 1x 1x 3x 3x 3x 31x 20x 20x 47x 47x 47x 20x 31x 15x 31x 3x 3x 31x 2x 2x 16x 31x 38x 5x 5x 38x 1x 1x 32x 38x 147x 147x 32x 32x 10x 10x 10x 10x 10x 10x 10x 10x 31x 140x 140x 140x 140x 140x 140x 10x 10x 31x 30x 30x 10x 10x 10x 10x 10x 31x 1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isCollection = require( '@stdlib/assert/is-collection' );
var isPlainObject = require( '@stdlib/assert/is-plain-object' );
var objectKeys = require( '@stdlib/utils/keys' );
var qnorm = require( '@stdlib/stats/base/dists/normal/quantile' );
var chisqCDF = require( '@stdlib/stats/base/dists/chisquare/cdf' );
var group = require( '@stdlib/utils/group' );
var ranks = require( '@stdlib/stats/ranks' );
var abs = require( '@stdlib/math/strided/special/abs' );
var pow = require( '@stdlib/math/base/special/pow' );
var indexOf = require( '@stdlib/utils/index-of' );
var format = require( '@stdlib/string/format' );
var filled = require( '@stdlib/array/base/filled' );
var Float64Array = require( '@stdlib/array/float64' );
var median = require( './median.js' );
var validate = require( './validate.js' );
var Results = require( './results.js' );
 
 
// MAIN //
 
/**
* Computes the Fligner-Killeen test for equal variances.
*
* @param {...NumericArray} arguments - either two or more number arrays or a single numeric array if an array of group indicators is supplied as an option
* @param {Options} [options] - function options
* @param {number} [options.alpha=0.05] - significance level
* @param {Array} [options.groups] - array of group indicators
* @throws {TypeError} must provide array-like arguments
* @throws {RangeError} alpha option has to be a number in the interval `[0,1]`
* @throws {Error} must provide at least two array-like arguments if `groups` is not set
* @throws {TypeError} options must be an object
* @throws {TypeError} must provide valid options
* @returns {Object} test results
*
* @example
* // Data from Hollander & Wolfe (1973), p. 116:
* var x = [ 2.9, 3.0, 2.5, 2.6, 3.2 ];
* var y = [ 3.8, 2.7, 4.0, 2.4 ];
* var z = [ 2.8, 3.4, 3.7, 2.2, 2.0 ];
*
* var out = fligner( x, y, z );
* // returns {...}
*/
function fligner() {
	var variance;
	var options;
	var ngroups;
	var levels;
	var groups;
	var scores;
	var table;
	var alpha;
	var delta;
	var args;
	var mean;
	var opts;
	var pval;
	var sums;
	var xabs;
	var stat;
	var err;
	var loc;
	var df;
	var M2;
	var a;
	var n;
	var x;
	var i;
	var j;
 
	args = [];
	ngroups = arguments.length;
	opts = {};
	if ( isPlainObject( arguments[ ngroups - 1 ] ) ) {
		options = arguments[ ngroups - 1 ];
		ngroups -= 1;
		err = validate( opts, options );
		if ( err ) {
			throw err;
		}
	}
	if ( opts.groups ) {
		groups = opts.groups;
		table = group( arguments[ 0 ], groups );
		levels = objectKeys( table );
		ngroups = levels.length;
		if ( ngroups < 2 ) {
			throw new Error( format( 'invalid option. `%s` option must be an array containing at least two unique elements. Option: `%s`.', 'groups', levels ) );
		}
		for ( i = 0; i < ngroups; i++ ) {
			args.push( table[ levels[ i ] ] );
		}
	} else {
		groups = [];
		for ( i = 0; i < ngroups; i++ ) {
			args.push( arguments[ i ] );
			groups = groups.concat( filled( i, arguments[ i ].length ) );
		}
	}
	if ( opts.alpha === void 0 ) {
		alpha = 0.05;
	} else {
		alpha = opts.alpha;
	}
	if ( alpha < 0.0 || alpha > 1.0 ) {
		throw new RangeError( format( 'invalid option. `%s` option must be a number on the interval: [0, 1]. Option: `%f`.', 'alpha', alpha ) );
	}
	x = [];
	for ( i = 0; i < ngroups; i++ ) {
		if ( !isCollection( args[ i ] ) ) {
			throw new TypeError( format( 'invalid argument. Must provide array-like arguments. Value: `%s`.', args[ i ] ) );
		}
		if ( args[ i ].length === 0 ) {
			throw new Error( format( 'invalid argument. Supplied arrays cannot be empty. Value: `%s`.', args[ i ] ) );
		}
		loc = median( args[ i ] );
		for ( j = 0; j < args[ i ].length; j++ ) {
			args[ i ][ j ] -= loc;
		}
		x = x.concat( args[ i ] );
	}
	n = x.length;
	xabs = new Float64Array( n );
	abs( n, 'float64', x, 1, 'float64', xabs, 1 );
	scores = ranks( xabs );
	a = new Float64Array( n );
	mean = 0.0;
	M2 = 0.0;
	sums = filled( 0.0, ngroups );
	for ( i = 0; i < n; i++ ) {
		a[ i ] = qnorm( ( 1.0 + ( scores[ i ]/(n+1) ) ) / 2.0, 0.0, 1.0 );
		sums[ ( levels ) ? indexOf( levels, groups[i] ) : groups[i] ] += a[ i ];
		delta = a[ i ] - mean;
		mean += delta / ( i+1 );
		M2 += delta * ( a[ i ] - mean );
	}
	variance = M2 / ( n - 1 );
	stat = 0.0;
	for ( i = 0; i < ngroups; i++ ) {
		stat += pow( sums[ i ], 2 ) / args[ i ].length;
	}
	stat = ( stat - ( n * pow( mean, 2 ) ) ) / variance;
	df = ngroups - 1;
	pval = 1.0 - chisqCDF( stat, df );
 
	return new Results( pval, opts.alpha, stat, df );
}
 
 
// EXPORTS //
 
module.exports = fligner;