Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 27x 27x 27x 27x 27x 27x 27x 27x 27x 27x 27x 27x 4x 4x 23x 23x 23x 23x 23x 27x 104x 104x 75x 75x 41x 75x 34x 34x 75x 75x 75x 72x 75x 3x 3x 75x 75x 75x 104x 104x 104x 104x 23x 27x 3x 3x 3x 3x 3x | /** * @license Apache-2.0 * * Copyright (c) 2025 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isnan = require( '@stdlib/math/base/assert/is-nan' ); var abs = require( '@stdlib/math/base/special/abs' ); // MAIN // /** * Computes the cumulative sum of double-precision floating-point strided array elements, ignoring `NaN` values and using a second-order iterative Kahan–Babuška algorithm. * * ## Method * * - This implementation uses a second-order iterative Kahan–Babuška algorithm, as described by Klein (2005). * * ## References * * - Klein, Andreas. 2005. "A Generalized Kahan-Babuška-Summation-Algorithm." _Computing_ 76 (3): 279–93. doi:[10.1007/s00607-005-0139-x](https://doi.org/10.1007/s00607-005-0139-x). * * @param {PositiveInteger} N - number of indexed elements * @param {number} sum - initial sum * @param {Float64Array} x - input array * @param {integer} strideX - stride length for `x` * @param {NonNegativeInteger} offsetX - starting index for `x` * @param {Float64Array} y - output array * @param {integer} strideY - stride length for `y` * @param {NonNegativeInteger} offsetY - starting index for `y` * @returns {Float64Array} output array * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, NaN ] ); * var y = new Float64Array( x.length ); * * var v = dnancusumkbn2( 4, 0.0, x, 2, 1, y, 1, 0 ); * // returns <Float64Array>[ 1.0, -1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0 ] */ function dnancusumkbn2( N, sum, x, strideX, offsetX, y, strideY, offsetY ) { var ccs; var ix; var iy; var cs; var cc; var v; var t; var c; var i; if ( N <= 0 ) { return y; } ix = offsetX; iy = offsetY; ccs = 0.0; // second order correction term for lost low order bits cs = 0.0; // first order correction term for lost low order bits for ( i = 0; i < N; i++ ) { v = x[ ix ]; if ( isnan( v ) === false ) { t = sum + v; if ( abs( sum ) >= abs( v ) ) { c = ( sum-t ) + v; } else { c = ( v-t ) + sum; } sum = t; t = cs + c; if ( abs( cs ) >= abs( c ) ) { cc = (cs-t) + c; } else { cc = (c-t) + cs; } cs = t; ccs += cc; } y[ iy ] = sum + cs + ccs; ix += strideX; iy += strideY; } return y; } // EXPORTS // module.exports = dnancusumkbn2; |