Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 61x 61x 61x 2x 2x 2x 2x 2x | /**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var base = require( './base.js' );
// MAIN //
/**
* Solves a system of linear equations with a tri diagonal matrix using the LU factorization computed by `dgttrf` and alternative indexing semantics.
*
* ## Notes
*
* - To solve A * X = B (no transpose), use itrans = 0.
* - To solve AT * X = B (transpose), use itrans = 1.
* - To solve AT * X = B (conjugate transpose = transpose), use itrans = 2.
*
* @param {integer} itrans - specifies the form of the system of equations
* @param {NonNegativeInteger} N - order of the matrix A
* @param {NonNegativeInteger} nrhs - number of right-hand sides, i.e., the number of columns of the matrix B
* @param {Float64Array} DL - multipliers that define the matrix L
* @param {integer} sdl - stride length for DL
* @param {NonNegativeInteger} odl - starting index of DL
* @param {Float64Array} D - N diagonal elements of the upper triangular matrix U
* @param {integer} sd - stride length for D
* @param {NonNegativeInteger} od - starting index of D
* @param {Float64Array} DU - elements of the first super-diagonal of U
* @param {integer} sdu - stride length for DU
* @param {NonNegativeInteger} odu - starting index of DU
* @param {Float64Array} DU2 - elements of the second super-diagonal of U
* @param {integer} sdu2 - stride length for DU2
* @param {NonNegativeInteger} odu2 - starting index of DU2
* @param {Int32Array} IPIV - vector of pivot indices
* @param {integer} si - stride length for IPIV
* @param {NonNegativeInteger} oi - starting index for IPIV
* @param {Float64Array} B - right-hand side matrix B, overwritten by the solution matrix X
* @param {integer} sb1 - stride length for the first dimension of B
* @param {integer} sb2 - stride for the second dimension of B
* @param {NonNegativeInteger} ob - starting index of B
* @returns {Float64Array} the solution matrix X
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var Int32Array = require( '@stdlib/array/int32' );
*
* var DL = new Float64Array( [ 0.25, 0.26666667 ] );
* var D = new Float64Array( [ 4.0, 3.75, 3.73333333 ] );
* var DU = new Float64Array( [ 1.0, 0.73333333 ] );
* var DU2 = new Float64Array( [ 0.0 ] );
* var IPIV = new Int32Array( [ 0, 1, 2 ] );
* var B = new Float64Array( [ 7.0, 8.0, 7.0 ] );
*
* var out = dgtts2( 1, 3, 1, DL, 1, 0, D, 1, 0, DU, 1, 0, DU2, 1, 0, IPIV, 1, 0, B, 1, 1, 0 );
* // out => <Float64Array>[ ~1.44, ~1.25, ~1.55 ]
*/
function dgtts2( itrans, N, nrhs, DL, sdl, odl, D, sd, od, DU, sdu, odu, DU2, sdu2, odu2, IPIV, si, oi, B, sb1, sb2, ob ) { // eslint-disable-line max-len, max-params
return base( itrans, N, nrhs, DL, sdl, odl, D, sd, od, DU, sdu, odu, DU2, sdu2, odu2, IPIV, si, oi, B, sb1, sb2, ob ); // eslint-disable-line max-len
}
// EXPORTS //
module.exports = dgtts2;
|