Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 29x 29x 29x 29x 29x 13x 13x 29x 7x 7x 29x 9x 3x 3x 6x 6x 6x 13x 29x 2x 2x 2x 2x 2x | /** * @license Apache-2.0 * * Copyright (c) 2025 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isLayout = require( '@stdlib/blas/base/assert/is-layout' ); var format = require( '@stdlib/string/format' ); var base = require( './base.js' ); // MAIN // /** * Solves a system of linear equations with a tri diagonal matrix using the LU factorization computed by `dgttrf`. * * ## Notes * * - To solve A * X = B (no transpose), use itrans = 0. * - To solve AT * X = B (transpose), use itrans = 1. * - To solve AT * X = B (conjugate transpose = transpose), use itrans = 2. * * @param {string} order - storage layout of B * @param {integer} itrans - specifies the form of the system of equations * @param {NonNegativeInteger} N - order of the matrix A * @param {NonNegativeInteger} nrhs - number of right-hand sides, i.e., the number of columns of the matrix B * @param {Float64Array} DL - multipliers that define the matrix L * @param {Float64Array} D - diagonal elements of the upper triangular matrix U * @param {Float64Array} DU - elements of the first super-diagonal of U * @param {Float64Array} DU2 - elements of the second super-diagonal of U * @param {Int32Array} IPIV - vector of pivot indices * @param {Float64Array} B - right-hand side matrix B, overwritten by the solution matrix X * @param {NonNegativeInteger} LDB - leading dimension of array B * @throws {TypeError} first argument must be a valid order * @throws {RangeError} eleventh argument must be greater than or equal to N * @returns {Float64Array} The solution matrix X * * @example * var Float64Array = require( '@stdlib/array/float64' ); * var Int32Array = require( '@stdlib/array/int32' ); * * var DL = new Float64Array( [ 0.25, 0.26666667 ] ); * var D = new Float64Array( [ 4.0, 3.75, 3.73333333 ] ); * var DU = new Float64Array( [ 1.0, 0.73333333 ] ); * var DU2 = new Float64Array( [ 0.0 ] ); * var IPIV = new Int32Array( [ 0, 1, 2 ] ); * var B = new Float64Array( [ 7.0, 8.0, 7.0 ] ); * * var out = dgtts2( 'column-major', 1, 3, 1, DL, D, DU, DU2, IPIV, B, 3 ); * // out => <Float64Array>[ ~1.44, ~1.25, ~1.55 ] */ function dgtts2( order, itrans, N, nrhs, DL, D, DU, DU2, IPIV, B, LDB ) { // eslint-disable-line max-params var sb1; var sb2; if ( !isLayout( order ) ) { throw new TypeError( format( 'invalid argument. First argument must be a valid order. Value: `%s`.', order ) ); } if ( order === 'column-major' ) { sb1 = 1; sb2 = LDB; } else { // order === 'row-major' if ( LDB < nrhs ) { throw new RangeError( format( 'invalid argument. Eighth argument must be greater than or equal to %d. Value: `%d`.', N, LDB ) ); } sb1 = LDB; sb2 = 1; } return base( itrans, N, nrhs, DL, 1, 0, D, 1, 0, DU, 1, 0, DU2, 1, 0, IPIV, 1, 0, B, sb1, sb2, 0 ); // eslint-disable-line max-len } // EXPORTS // module.exports = dgtts2; |