All files / lapack/base/dgttrf/lib ndarray.js

100% Statements 85/85
100% Branches 4/4
100% Functions 1/1
100% Lines 85/85

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 862x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 13x 13x 3x 3x 10x 13x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var format = require( '@stdlib/string/format' );
var base = require( './base.js' );
 
 
// MAIN //
 
/**
* Computes an `LU` factorization of a real tridiagonal matrix `A` using elimination with partial pivoting and row interchanges and alternative indexing semantics.
*
* ## Notes
*
* -   On exit, `DL` is overwritten by the multipliers that define the matrix `L` from the `LU` factorization of `A`.
* -   On exit, `D` is overwritten by the diagonal elements of the upper triangular matrix `U` from the `LU` factorization of `A`.
* -   On exit, `DU` is overwritten by the elements of the first super-diagonal of `U`.
* -   On exit, `DU2` is overwritten by the elements of the second super-diagonal of `U`.
* -   On exit, for 0 <= i < n, row i of the matrix was interchanged with row IPIV(i).  IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required.
*
* @param {NonNegativeInteger} N - order of matrix A.
* @param {Float64Array} DL - sub diagonal elements of A.
* @param {integer} sdl - stride length for `DL`
* @param {NonNegativeInteger} odl - starting index of `DL`
* @param {Float64Array} D - diagonal elements of A.
* @param {integer} sd - stride length for `D`
* @param {NonNegativeInteger} od - starting index of `D`
* @param {Float64Array} DU - super diagonal elements of A.
* @param {integer} sdu - stride length for `DU`
* @param {NonNegativeInteger} odu - starting index of `DU`
* @param {Float64Array} DU2 - vector to store the second super diagonal of `U`
* @param {integer} sdu2 - stride length for `DU2`
* @param {NonNegativeInteger} odu2 - starting index of `DU2`
* @param {Int32Array} IPIV - vector of pivot indices
* @param {integer} si - stride length for `IPIV`
* @param {NonNegativeInteger} oi - starting index of `IPIV`
* @throws {RangeError} first argument must be a nonnegative integer
* @returns {integer} status code
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var DL = new Float64Array( [ 1.0, 1.0 ] );
* var D = new Float64Array( [ 2.0, 3.0, 1.0 ] );
* var DU = new Float64Array( [ 1.0, 1.0 ] );
* var DU2 = new Float64Array( 1 );
* var IPIV = new Int32Array( 3 );
*
* dgttrf( 3, DL, 1, 0, D, 1, 0, DU, 1, 0, DU2, 1, 0, IPIV, 1, 0 );
* // DL => <Float64Array>[ 0.5, 0.4 ]
* // D => <Float64Array>[ 2, 2.5, 0.6 ]
* // DU => <Float64Array>[ 1, 1 ]
* // DU2 => <Float64Array>[ 0 ]
* // IPIV => <Int32Array>[ 0, 1, 2 ]
*/
function dgttrf( N, DL, sdl, odl, D, sd, od, DU, sdu, odu, DU2, sdu2, odu2, IPIV, si, oi ) { // eslint-disable-line max-len, max-params
	if ( N < 0 ) {
		throw new RangeError( format( 'invalid argument. First argument must be a nonnegative integer. Value: `%d`.', N ) );
	}
	return base( N, DL, sdl, odl, D, sd, od, DU, sdu, odu, DU2, sdu2, odu2, IPIV, si, oi ); // eslint-disable-line max-len
}
 
 
// EXPORTS //
 
module.exports = dgttrf;