Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 7x 7x 3x 3x 4x 7x 2x 2x 2x 2x 2x | /** * @license Apache-2.0 * * Copyright (c) 2025 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var format = require( '@stdlib/string/format' ); var base = require( './base.js' ); // MAIN // /** * Computes an `LU` factorization of a real tridiagonal matrix `A` using elimination with partial pivoting and row interchanges. * * ## Notes * * - On exit, `DL` is overwritten by the multipliers that define the matrix `L` from the `LU` factorization of `A`. * - On exit, `D` is overwritten by the diagonal elements of the upper triangular matrix `U` from the `LU` factorization of `A`. * - On exit, `DU` is overwritten by the elements of the first super-diagonal of `U`. * - On exit, `DU2` is overwritten by the elements of the second super-diagonal of `U`. * - On exit, for 0 <= i < n, row i of the matrix was interchanged with row IPIV(i). IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required. * * @param {NonNegativeInteger} N - order of matrix A * @param {Float64Array} DL - sub diagonal elements of A. * @param {Float64Array} D - diagonal elements of A. * @param {Float64Array} DU - super diagonal elements of A. * @param {Float64Array} DU2 - vector to store the second super diagonal of `U` * @param {Int32Array} IPIV - vector of pivot indices * @throws {RangeError} first argument must be a nonnegative integer * @returns {integer} status code * * @example * var Float64Array = require( '@stdlib/array/float64' ); * var Int32Array = require( '@stdlib/array/int32' ); * * var DL = new Float64Array( [ 1.0, 1.0 ] ); * var D = new Float64Array( [ 2.0, 3.0, 1.0 ] ); * var DU = new Float64Array( [ 1.0, 1.0 ] ); * var DU2 = new Float64Array( 1 ); * var IPIV = new Int32Array( 3 ); * * dgttrf( 3, DL, D, DU, DU2, IPIV ); * // DL => <Float64Array>[ 0.5, 0.4 ] * // D => <Float64Array>[ 2, 2.5, 0.6 ] * // DU => <Float64Array>[ 1, 1 ] * // DU2 => <Float64Array>[ 0 ] * // IPIV => <Int32Array>[ 0, 1, 2 ] */ function dgttrf( N, DL, D, DU, DU2, IPIV ) { if ( N < 0 ) { throw new RangeError( format( 'invalid argument. First argument must be a nonnegative integer. Value: `%d`.', N ) ); } return base( N, DL, 1, 0, D, 1, 0, DU, 1, 0, DU2, 1, 0, IPIV, 1, 0 ); } // EXPORTS // module.exports = dgttrf; |