All files / lapack/base/dgttrf/lib dgttrf.js

100% Statements 76/76
100% Branches 4/4
100% Functions 1/1
100% Lines 76/76

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 772x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 7x 7x 3x 3x 4x 7x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var format = require( '@stdlib/string/format' );
var base = require( './base.js' );
 
 
// MAIN //
 
/**
* Computes an `LU` factorization of a real tridiagonal matrix `A` using elimination with partial pivoting and row interchanges.
*
* ## Notes
*
* -   On exit, `DL` is overwritten by the multipliers that define the matrix `L` from the `LU` factorization of `A`.
* -   On exit, `D` is overwritten by the diagonal elements of the upper triangular matrix `U` from the `LU` factorization of `A`.
* -   On exit, `DU` is overwritten by the elements of the first super-diagonal of `U`.
* -   On exit, `DU2` is overwritten by the elements of the second super-diagonal of `U`.
* -   On exit, for 0 <= i < n, row i of the matrix was interchanged with row IPIV(i).  IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required.
*
* @param {NonNegativeInteger} N - order of matrix A
* @param {Float64Array} DL - sub diagonal elements of A.
* @param {Float64Array} D - diagonal elements of A.
* @param {Float64Array} DU - super diagonal elements of A.
* @param {Float64Array} DU2 - vector to store the second super diagonal of `U`
* @param {Int32Array} IPIV - vector of pivot indices
* @throws {RangeError} first argument must be a nonnegative integer
* @returns {integer} status code
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var Int32Array = require( '@stdlib/array/int32' );
*
* var DL = new Float64Array( [ 1.0, 1.0 ] );
* var D = new Float64Array( [ 2.0, 3.0, 1.0 ] );
* var DU = new Float64Array( [ 1.0, 1.0 ] );
* var DU2 = new Float64Array( 1 );
* var IPIV = new Int32Array( 3 );
*
* dgttrf( 3, DL, D, DU, DU2, IPIV );
* // DL => <Float64Array>[ 0.5, 0.4 ]
* // D => <Float64Array>[ 2, 2.5, 0.6 ]
* // DU => <Float64Array>[ 1, 1 ]
* // DU2 => <Float64Array>[ 0 ]
* // IPIV => <Int32Array>[ 0, 1, 2 ]
*/
function dgttrf( N, DL, D, DU, DU2, IPIV ) {
	if ( N < 0 ) {
		throw new RangeError( format( 'invalid argument. First argument must be a nonnegative integer. Value: `%d`.', N ) );
	}
	return base( N, DL, 1, 0, D, 1, 0, DU, 1, 0, DU2, 1, 0, IPIV, 1, 0 );
}
 
 
// EXPORTS //
 
module.exports = dgttrf;