Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 19x 2x 1x 1x 1x 1x 17x 19x 17x 17x 19x 5x 5x 12x 19x 12x 12x 12x 12x 12x 12x 19x 5x 1x 1x 1x 1x 1x | /** * @license Apache-2.0 * * Copyright (c) 2025 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; /** * Returns an accumulator function which compute a moving weighted mean while handling NaN values incrementally. * * ## Method * * - The weighted arithmetic mean is defined as * * ```tex * \mu = \frac{\sum_{i=0 , x_i \neq\text{NaN}}^{n-1} w_i x_i}{\sum_{i=0 , x_i \neq\text{NaN}}^{n-1} w_i} * ``` * * where \\( w_i \\) are the weights. * * - The weighted arithmetic mean is equivalent to the simple arithmetic mean when all weights are equal. * * If the value of \\( x_k \\ ) is NaN, it is **excluded** from both numerator and denominator * * ```tex * \begin{align*} * \mu &= \frac{\sum_{i=0}^{n-1} w x_i}{\sum_{i=0}^{n-1} w} \\ * &= \frac{w\sum_{i=0}^{n-1} x_i}{nw} \\ * &= \frac{1}{n} \sum_{i=0}^{n-1} * \end{align*} * ``` * * - If the weights are different, then one can view weights either as sample frequencies or as a means to calculate probabilities where \\( p_i = w_i / \sum w_i \\). * * - To derive an incremental formula for computing a weighted arithmetic mean while ignoring NaN values, let * * ```tex * W_n = \sum_{i=1, x_i \neq \text{NaN}}^{n} w_i * ``` * * - Accordingly, * * ```tex * \begin{align*} * \mu_{n-1}, & \text{if } x_n = \text{NaN} \\ * \mu_{n-1} + \frac{w_n}{W_n} (x_n - \mu_{n-1}) , & \text{otherwise} * \end{align*} * ``` * * This ensures NaN values **do not effect the mean**, and only valid values contribute to the calculation. * * @returns {Function} accumulator function * * @example * var incrnanwmean = require('@stdlib/stats/incr/nanwmean'); * * var accumulator = incrnanwmean(); * * var mean = accumulator(); * // returns null * * mean = accumulator(2.0, 3.0); * // returns 2.0 * * mean = accumulator(NaN, 4.0); * // returns 2.0 (Skips NaN) * * mean = accumulator(3.0 , NaN); * // returns 2.0 (Skips NaN) * * mean = accumulator(5.0, 2.0); * // returns 3.5 * * mean = accumulator(); * // returns 3.5 */ function incrnanwmean() { var wsum = 0.0; var mu = null; var FLG = false; return accumulator; /** * If provided arguments, the accumulator function returns an updated weighted mean. If not provided arguments, the accumulator function returns the current weighted mean. * * @private * @param {number} [x] - value * @param {number} [w] - weight * @returns {(number|null)} weighted mean or null */ function accumulator( x, w ) { if ( arguments.length === 0 ) { if ( !FLG ) { return null; } return mu; } if( arguments.length == 1 && w == undefined ) { return NaN; } // Skipping NaN values if(isNaN(x) || isNaN(w)) { return mu; // return current mean without updating } if(w < 0) { return NaN; // return NaN if weight is negative } FLG = true; // make FLG true which means function has at least one valid value. wsum += w; mu += ( w/wsum ) * ( x-mu ); return mu; } } // EXPORTS // module.exports = incrnanwmean; |