All files / stats/base/mean/lib ndarray.js

94.87% Statements 74/78
83.33% Branches 10/12
100% Functions 1/1
94.87% Lines 74/78

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 793x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 18x 18x 18x 18x 18x 18x 18x 18x 4x 4x 14x 18x     18x 6x 6x 8x 8x 18x 36x 36x     36x 36x 36x 8x 18x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var arraylike2object = require( '@stdlib/array/base/arraylike2object' );
var accessors = require( './accessors.js' );
 
 
// MAIN //
 
/**
* Computes the arithmetic mean of a strided array.
*
* @param {PositiveInteger} N - number of indexed elements
* @param {NumericArray} x - input array
* @param {integer} strideX - stride length
* @param {NonNegativeInteger} offsetX - starting index
* @returns {number} arithmetic mean
*
* @example
* var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ];
*
* var v = mean( 4, x, 2, 1 );
* // returns 1.25
*/
function mean( N, x, strideX, offsetX ) {
	var sum;
	var ix;
	var o;
	var v;
	var i;
 
	if ( N <= 0 ) {
		return NaN;
	}
	o = arraylike2object( x );
	if ( o.accessorProtocol ) {
		return accessors( N, o, strideX, offsetX );
	}
	if ( N === 1 || strideX === 0 ) {
		return x[ offsetX ];
	}
	ix = offsetX;
	sum = 0;
	for ( i = 0; i < N; i++ ) {
		v = x[ ix ];
		if ( isnan( v ) ) {
			return v;
		}
		sum += v;
		ix += strideX;
	}
	return sum / N;
}
 
 
// EXPORTS //
 
module.exports = mean;