All files / blas/ext/base/ssorthp/lib ndarray.js

100% Statements 147/147
100% Branches 25/25
100% Functions 1/1
100% Lines 147/147

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 1483x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 46x 46x 46x 46x 46x 46x 46x 46x 46x 46x 46x 46x 6x 6x 40x 46x 19x 19x 19x 40x 40x 40x 40x 40x 40x 40x 46x 1962x 646x 646x 646x 1962x 1316x 1316x 1316x 1316x 1316x 40x 40x 1276x 1276x 1276x 1276x 1276x 1276x 1276x 1922x 1922x 1922x 1922x 1922x 1922x 1922x 1922x 1962x 5703x 5703x 5703x 5573x 5573x 5573x 5573x 5573x 2401x 2401x 5573x 5703x 5703x 5703x 4969x 4969x 4969x 4969x 4969x 4969x 4969x 4969x 5703x 734x 734x 734x 5703x 1922x 1922x 1922x 46x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isPositiveZerof = require( '@stdlib/math/base/assert/is-positive-zerof' );
var isnanf = require( '@stdlib/math/base/assert/is-nanf' );
var floor = require( '@stdlib/math/base/special/floor' );
 
 
// MAIN //
 
/**
* Sorts a single-precision floating-point strided array using heapsort.
*
* ## Notes
*
* -   This implementation uses an in-place algorithm derived from the work of Floyd (1964).
*
* ## References
*
* -   Williams, John William Joseph. 1964. "Algorithm 232: Heapsort." _Communications of the ACM_ 7 (6). New York, NY, USA: Association for Computing Machinery: 347–49. doi:[10.1145/512274.512284](https://doi.org/10.1145/512274.512284).
* -   Floyd, Robert W. 1964. "Algorithm 245: Treesort." _Communications of the ACM_ 7 (12). New York, NY, USA: Association for Computing Machinery: 701. doi:[10.1145/355588.365103](https://doi.org/10.1145/355588.365103).
*
* @param {PositiveInteger} N - number of indexed elements
* @param {number} order - sort order
* @param {Float32Array} x - input array
* @param {integer} strideX - stride length
* @param {NonNegativeInteger} offsetX - starting index
* @returns {Float32Array} input array
*
* @example
* var Float32Array = require( '@stdlib/array/float32' );
*
* var x = new Float32Array( [ 1.0, -2.0, 3.0, -4.0 ] );
*
* ssorthp( x.length, 1.0, x, 1, 0 );
* // x => <Float32Array>[ -4.0, -2.0, 1.0, 3.0 ]
*/
function ssorthp( N, order, x, strideX, offsetX ) {
	var parent;
	var child;
	var v1;
	var v2;
	var n;
	var t;
	var i;
	var j;
	var k;
 
	if ( N <= 0 || order === 0.0 ) {
		return x;
	}
	// For a positive stride, sorting in decreasing order is equivalent to providing a negative stride and sorting in increasing order, and, for a negative stride, sorting in decreasing order is equivalent to providing a positive stride and sorting in increasing order...
	if ( order < 0.0 ) {
		strideX *= -1;
		offsetX -= (N-1) * strideX;
	}
	// Set the initial heap size:
	n = N;
 
	// Specify an initial "parent" index for building the heap:
	parent = floor( N / 2 );
 
	// Continue looping until the array is sorted...
	while ( true ) {
		if ( parent > 0 ) {
			// We need to build the heap...
			parent -= 1;
			t = x[ offsetX+(parent*strideX) ];
		} else {
			// Reduce the heap size:
			n -= 1;
 
			// Check if the heap is empty, and, if so, we are finished sorting...
			if ( n === 0 ) {
				return x;
			}
			// Store the last heap value in a temporary variable in order to make room for the heap root being placed into its sorted position:
			i = offsetX + (n*strideX);
			t = x[ i ];
 
			// Move the heap root to its sorted position:
			x[ i ] = x[ offsetX ];
		}
		// We need to "sift down", pushing `t` down the heap to in order to replace the parent and satisfy the heap property...
 
		// Start at the parent index:
		j = parent;
 
		// Get the "left" child index:
		child = (j*2) + 1;
 
		while ( child < n ) {
			// Find the largest child...
			k = child + 1;
			if ( k < n ) {
				v1 = x[ offsetX+(k*strideX) ];
				v2 = x[ offsetX+(child*strideX) ];
 
				// Check if a "right" child exists and is "bigger"...
				if ( v1 > v2 || isnanf( v1 ) || (v1 === v2 && isPositiveZerof( v1 ) ) ) { // eslint-disable-line max-len
					child += 1;
				}
			}
			// Check if the largest child is bigger than `t`...
			v1 = x[ offsetX+(child*strideX) ];
			if ( v1 > t || isnanf( v1 ) || ( v1 === t && isPositiveZerof( v1 ) ) ) { // eslint-disable-line max-len
				// Insert the larger child value:
				x[ offsetX+(j*strideX) ] = v1;
 
				// Update `j` to point to the child index:
				j = child;
 
				// Get the "left" child index and repeat...
				child = (j*2) + 1;
			} else {
				// We've found `t`'s place in the heap...
				break;
			}
		}
		// Insert `t` into the heap:
		x[ offsetX+(j*strideX) ] = t;
	}
}
 
 
// EXPORTS //
 
module.exports = ssorthp;