All files / stats/base/dists/normal/logpdf/lib factory.js

100% Statements 86/86
100% Branches 9/9
100% Functions 2/2
100% Lines 86/86

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 873x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 1014x 1014x 1014x 1014x 1014x 1014x 1014x 1009x 1014x 9x 9x 1014x 1x 1x 1004x 1004x 1004x 1004x 1004x 1004x 1004x 1004x 1004x 1004x 1004x 1004x 1004x 1004x 1004x 1004x 1004x 1003x 1003x 1014x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var constantFunction = require( '@stdlib/utils/constant-function' );
var degenerate = require( '@stdlib/stats/base/dists/degenerate/logpdf' ).factory;
var LN_TWO_PI = require( '@stdlib/constants/float64/ln-two-pi' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var ln = require( '@stdlib/math/base/special/ln' );
 
 
// MAIN //
 
/**
* Returns a function for evaluating the natural logarithm of the probability density function (PDF) for a normal distribution.
*
* @param {number} mu - mean
* @param {NonNegativeNumber} sigma - standard deviation
* @returns {Function} logPDF
*
* @example
* var logpdf = factory( 10.0, 2.0 );
* var y = logpdf( 10.0 );
* // returns ~-1.612
*
* y = logpdf( 5.0 );
* // returns ~-4.737
*/
function factory( mu, sigma ) {
	var s2;
	var A;
	var B;
	if (
		isnan( mu ) ||
		isnan( sigma ) ||
		sigma < 0.0
	) {
		return constantFunction( NaN );
	}
	if ( sigma === 0.0 ) {
		return degenerate( mu );
	}
	s2 = pow( sigma, 2.0 );
	A = (-0.5) * ( ( 2.0*ln( sigma ) ) + LN_TWO_PI );
	B = -1.0 / ( 2.0*s2 );
	return logpdf;
 
	/**
	* Evaluates the natural logarithm of the probability density function (PDF) for a normal distribution.
	*
	* @private
	* @param {number} x - input value
	* @returns {number} evaluated logPDF
	*
	* @example
	* var y = logpdf( -3.14 );
	* // returns <number>
	*/
	function logpdf( x ) {
		return A + ( B * pow( x-mu, 2.0 ) );
	}
}
 
 
// EXPORTS //
 
module.exports = factory;