Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 1020x 1020x 1020x 1020x 1020x 1020x 1011x 1020x 14x 14x 1020x 4x 4x 1002x 1020x 261x 261x 741x 741x 1020x 2x 2x 2x 2x 2x | /** * @license Apache-2.0 * * Copyright (c) 2022 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var ln = require( '@stdlib/math/base/special/ln' ); var log1p = require( '@stdlib/math/base/special/log1p' ); var abs2 = require( '@stdlib/math/base/special/abs2' ); var erfc = require( '@stdlib/math/base/special/erfc' ); var erfcx = require( '@stdlib/math/base/special/erfcx' ); var NINF = require( '@stdlib/constants/float64/ninf' ); var isnan = require( '@stdlib/math/base/assert/is-nan' ); // VARIABLES // var INV_SQRT_TWO = 0.7071067811865475; // 1/sqrt(2) // MAIN // /** * Evaluates the natural logarithm of the cumulative distribution function (CDF) for a normal distribution with mean `mu` and standard deviation `sigma` at a value `x`. * * @param {number} x - input value * @param {number} mu - mean * @param {NonNegativeNumber} sigma - standard deviation * @returns {number} logarithm of cumulative distribution function * * @example * var y = logcdf( 2.0, 0.0, 1.0 ); * // returns ~-0.023 * * @example * var y = logcdf( -1.0, 4.0, 2.0 ); * // returns ~-5.082 * * @example * var y = logcdf( NaN, 0.0, 1.0 ); * // returns NaN * * @example * var y = logcdf( 0.0, NaN, 1.0 ); * // returns NaN * * @example * var y = logcdf( 0.0, 0.0, NaN ); * // returns NaN * * @example * // Negative standard deviation: * var y = logcdf( 2.0, 0.0, -1.0 ); * // returns NaN * * @example * var y = logcdf( 2.0, 8.0, 0.0 ); * // returns -Infinity * * @example * var y = logcdf( 8.0, 8.0, 0.0 ); * // returns 0.0 */ function logcdf( x, mu, sigma ) { var z; if ( isnan( x ) || isnan( mu ) || isnan( sigma ) || sigma < 0.0 ) { return NaN; } if ( sigma === 0.0 ) { return (x < mu) ? NINF : 0.0; } z = ( x - mu ) / sigma; if ( z < -1.0 ) { return ln( erfcx( -z * INV_SQRT_TWO ) / 2.0 ) - ( abs2(z) / 2.0 ); } // Case: z >= -1.0: return log1p( -erfc( z * INV_SQRT_TWO ) / 2.0 ); } // EXPORTS // module.exports = logcdf; |