All files / stats/base/dists/negative-binomial/logpmf/lib main.js

100% Statements 112/112
100% Branches 12/12
100% Functions 1/1
100% Lines 112/112

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 1132x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 4018x 4018x 4018x 4018x 4018x 4018x 4018x 4010x 4018x 10x 10x 4018x 8x 8x 4000x 4018x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var isNonNegativeInteger = require( '@stdlib/math/base/assert/is-nonnegative-integer' );
var ln = require( '@stdlib/math/base/special/ln' );
var NINF = require( '@stdlib/constants/float64/ninf' );
var ibetaDerivative = require( './ibeta_derivative.js' );
 
 
// MAIN //
 
/**
* Evaluates the natural logarithm of the probability mass function (PMF) for a negative binomial distribution with number of successes until experiment is stopped `r` and success probability `p`.
*
* @param {number} x - input value
* @param {PositiveNumber} r - number of successes until experiment is stopped
* @param {Probability} p - success probability
* @returns {number} evaluated logPMF
*
* @example
* var y = logpmf( 5.0, 20.0, 0.8 );
* // returns ~-1.853
*
* @example
* var y = logpmf( 21.0, 20.0, 0.5 );
* // returns ~-2.818
*
* @example
* var y = logpmf( 5.0, 10.0, 0.4 );
* // returns ~-4.115
*
* @example
* var y = logpmf( 0.0, 10.0, 0.9 );
* // returns ~-1.054
*
* @example
* var y = logpmf( 21.0, 15.5, 0.5 );
* // returns ~-3.292
*
* @example
* var y = logpmf( 5.0, 7.4, 0.4 );
* // returns ~-2.976
*
* @example
* var y = logpmf( 2.0, 0.0, 0.5 );
* // returns NaN
*
* @example
* var y = logpmf( 2.0, -2.0, 0.5 );
* // returns NaN
*
* @example
* var y = logpmf( 2.0, 20, -1.0 );
* // returns NaN
*
* @example
* var y = logpmf( 2.0, 20, 1.5 );
* // returns NaN
*
* @example
* var y = logpmf( NaN, 20.0, 0.5 );
* // returns NaN
*
* @example
* var y = logpmf( 0.0, NaN, 0.5 );
* // returns NaN
*
* @example
* var y = logpmf( 0.0, 20.0, NaN );
* // returns NaN
*/
function logpmf( x, r, p ) {
	if (
		isnan( x ) ||
		isnan( r ) ||
		isnan( p ) ||
		r <= 0.0 ||
		p <= 0.0 ||
		p > 1.0
	) {
		return NaN;
	}
	if ( !isNonNegativeInteger( x ) || p === 0.0 ) {
		return NINF;
	}
	return ln( p ) - ln( r + x ) + ln( ibetaDerivative( p, r, x + 1.0 ) );
}
 
 
// EXPORTS //
 
module.exports = logpmf;