Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 8000x 8000x 8000x 8000x 8000x 8000x 8000x 8000x 8000x 8000x 3x 3x 3x 3x 3x | /** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var ibetaPowerTerms = require( './ibeta_power_terms.js' ); // MAIN // /** * Computes the partial derivative with respect to x of the incomplete beta function. * * @private * @param {Probability} x - input value (0 < x <= 1) * @param {PositiveNumber} a - first parameter * @param {PositiveNumber} b - second parameter (must be greater than 1) * @returns {number} value of the partial derivative */ function ibetaDerivative( x, a, b ) { var f1; var y; if ( x === 1.0 ) { return 0.0; } // Regular cases: f1 = ibetaPowerTerms( a, b, x, 1.0 - x, true ); y = ( 1.0 - x ) * x; f1 /= y; return f1; } // EXPORTS // module.exports = ibetaDerivative; |