Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 10x 10x 10x 10x 10x 10x 10x 10x 10x 2x 2x 10x 2x 2x 6x 6x 6x 6x 6x 10x 24x 24x 19x 19x 19x 24x 24x 10x 1x 1x 5x 5x 5x 5x 5x 10x 22x 22x 19x 19x 22x 22x 5x 10x 2x 2x 2x 2x 2x | /** * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MAIN // /** * Computes the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result. * * ## Method * * - This implementation uses a two-pass approach, as suggested by Neely (1966). * * ## References * * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). * * @param {PositiveInteger} N - number of indexed elements * @param {Float32Array} x - input array * @param {integer} stride - stride length * @param {NonNegativeInteger} offset - starting index * @returns {number} arithmetic mean * * @example * var Float32Array = require( '@stdlib/array/float32' ); * var floor = require( '@stdlib/math/base/special/floor' ); * * var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] ); * var N = floor( x.length / 2 ); * * var v = dsnanmeanpn( N, x, 2, 1 ); * // returns 1.25 */ function dsnanmeanpn( N, x, stride, offset ) { var ix; var v; var s; var t; var n; var i; if ( N <= 0 ) { return NaN; } if ( N === 1 || stride === 0 ) { return x[ offset ]; } ix = offset; // Compute an estimate for the mean... s = 0.0; n = 0; for ( i = 0; i < N; i++ ) { v = x[ ix ]; if ( v === v ) { n += 1; s += v; } ix += stride; } if ( n === 0 ) { return NaN; } s /= n; // Compute an error term... ix = offset; t = 0.0; for ( i = 0; i < N; i++ ) { v = x[ ix ]; if ( v === v ) { t += v - s; } ix += stride; } return s + (t/n); } // EXPORTS // module.exports = dsnanmeanpn; |