All files / stats/base/dsnanmeanpn/lib dsnanmeanpn.js

100% Statements 103/103
100% Branches 18/18
100% Functions 1/1
100% Lines 103/103

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 1042x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 10x 10x 10x 10x 10x 10x 10x 10x 10x 10x 2x 2x 10x 2x 2x 10x 1x 10x 5x 5x 6x 6x 6x 6x 6x 10x 23x 23x 19x 19x 19x 23x 23x 10x 1x 1x 5x 5x 5x 5x 5x 10x 21x 21x 19x 19x 21x 21x 5x 10x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MAIN //
 
/**
* Computes the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.
*
* ## Method
*
* -   This implementation uses a two-pass approach, as suggested by Neely (1966).
*
* ## References
*
* -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
* -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
*
* @param {PositiveInteger} N - number of indexed elements
* @param {Float32Array} x - input array
* @param {integer} stride - stride length
* @returns {number} arithmetic mean
*
* @example
* var Float32Array = require( '@stdlib/array/float32' );
*
* var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
* var N = x.length;
*
* var v = dsnanmeanpn( N, x, 1 );
* // returns ~0.3333
*/
function dsnanmeanpn( N, x, stride ) {
	var ix;
	var v;
	var s;
	var t;
	var n;
	var i;
	var o;
 
	if ( N <= 0 ) {
		return NaN;
	}
	if ( N === 1 || stride === 0 ) {
		return x[ 0 ];
	}
	if ( stride < 0 ) {
		ix = (1-N) * stride;
	} else {
		ix = 0;
	}
	o = ix;
 
	// Compute an estimate for the mean...
	s = 0.0;
	n = 0;
	for ( i = 0; i < N; i++ ) {
		v = x[ ix ];
		if ( v === v ) {
			n += 1;
			s += v;
		}
		ix += stride;
	}
	if ( n === 0 ) {
		return NaN;
	}
	s /= n;
 
	// Compute an error term...
	t = 0.0;
	ix = o;
	for ( i = 0; i < N; i++ ) {
		v = x[ ix ];
		if ( v === v ) {
			t += v - s;
		}
		ix += stride;
	}
	return s + (t/n);
}
 
 
// EXPORTS //
 
module.exports = dsnanmeanpn;