All files / stats/base/dsnanmeanors/lib ndarray.js

100% Statements 75/75
100% Branches 12/12
100% Functions 1/1
100% Lines 75/75

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 762x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 10x 10x 10x 10x 10x 10x 10x 10x 2x 2x 10x 2x 2x 6x 6x 6x 10x 24x 24x 19x 19x 19x 24x 24x 10x 1x 1x 5x 10x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MAIN //
 
/**
* Computes the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.
*
* @param {PositiveInteger} N - number of indexed elements
* @param {Float32Array} x - input array
* @param {integer} stride - stride length
* @param {NonNegativeInteger} offset - starting index
* @returns {number} arithmetic mean
*
* @example
* var Float32Array = require( '@stdlib/array/float32' );
* var floor = require( '@stdlib/math/base/special/floor' );
*
* var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
* var N = floor( x.length / 2 );
*
* var v = dsnanmeanors( N, x, 2, 1 );
* // returns 1.25
*/
function dsnanmeanors( N, x, stride, offset ) {
	var sum;
	var ix;
	var v;
	var n;
	var i;
 
	if ( N <= 0 ) {
		return NaN;
	}
	if ( N === 1 || stride === 0 ) {
		return x[ offset ];
	}
	ix = offset;
	sum = 0.0;
	n = 0;
	for ( i = 0; i < N; i++ ) {
		v = x[ ix ];
		if ( v === v ) {
			sum += v;
			n += 1;
		}
		ix += stride;
	}
	if ( n === 0 ) {
		return NaN;
	}
	return sum / n;
}
 
 
// EXPORTS //
 
module.exports = dsnanmeanors;