All files / math/base/special/riemann-zeta/lib polynomial_series.js

100% Statements 99/99
100% Branches 4/4
100% Functions 1/1
100% Lines 99/99

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 1001x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 51x 51x 51x 51x 51x 51x 51x 51x 51x 51x 51x 918x 918x 918x 51x 51x 51x 51x 918x 918x 918x 918x 918x 918x 51x 51x 1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The original C++ code and copyright notice are from the [Boost library]{@link http://www.boost.org/doc/libs/1_60_0/boost/math/special_functions/zeta.hpp}. The implementation follows the original, but has been modified for JavaScript.
*
* ```text
* (C) Copyright John Maddock 2006.
*
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
* ```
*/
 
'use strict';
 
// MODULES //
 
var pow = require( '@stdlib/math/base/special/pow' );
var powm1 = require( '@stdlib/math/base/special/powm1' );
 
 
// VARIABLES //
 
// -ln(eps)/2 => -ln(2.220446049250313e-16)/2 = 18.021826694558577
var N = 18|0; // asm type annotation
 
// 2**N
var TWO_N = 262144|0; // asm type annotation
var NEG_TWO_N = -TWO_N;
 
 
// MAIN //
 
/**
* Evaluates the Riemann zeta function using a polynomial series.
*
* ## References
*
* -   P. Borwein. "An Efficient Algorithm for the Riemann Zeta Function". Canadian Mathematical Society, Conference Proceedings. See algorithm [3][p155].
*
* [p155]: http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf
*
* @private
* @param {number} s - input value
* @returns {number} function value
*
* @example
* var v = series( 3.0 );
* // returns ~1.202
*/
function series( s ) {
	var sign;
	var term;
	var sum;
	var tmp;
	var N2;
	var i;
 
	sum = 0.0;
	sign = 1;
	for ( i = 0; i < N; i++ ) {
		sum += sign * NEG_TWO_N / pow(i+1, s);
		sign *= -1; // flip the sign
	}
	tmp = 1.0;
	term = 1.0;
	N2 = 2 * N;
	for ( i = N; i <= N2-1; i++ ) {
		sum += sign * (tmp - TWO_N) / pow(i+1, s);
		sign *= -1; // flip the sign
		term *= N2 - i;
		term /= i - N + 1.0;
		tmp += term;
	}
	return sum / (TWO_N * powm1(2.0, 1.0-s));
}
 
 
// EXPORTS //
 
module.exports = series;