All files / math/base/special/gammainc/lib lower_gamma_series.js

100% Statements 72/72
100% Branches 3/3
100% Functions 1/1
100% Lines 72/72

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 731x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 805x 805x 805x 805x 805x 805x 805x 805x 805x 805x 805x 1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The original C++ code and copyright notice are from the [Boost library]{@link http://www.boost.org/doc/libs/1_37_0/boost/math/special_functions/gamma.hpp}. The implementation has been modified for JavaScript.
*
* ```text
* (C) Copyright John Maddock 2006.
* (C) Copyright Paul A. Bristow 2007.
*
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
* ```
*/
 
'use strict';
 
// MODULES //
 
var sumSeries = require( '@stdlib/math/base/tools/sum-series' );
var lowerIncompleteGammaSeries = require( './lower_incomplete_gamma_series.js' );
 
 
// MAIN //
 
/**
* Sums elements of the series expansion of the lower incomplete gamma function.
*
* ## Method
*
* -   Multiply result by `((z^a) * (e^-z) / a)` to get the full lower incomplete integral.
* -   Divide by `tgamma(a)` to get the normalized value.
*
* @private
* @param {number} a - function parameter
* @param {number} z - function parameter
* @param {number} initialValue - initial value of the resulting sum
* @returns {number} sum of terms of lower gamma series
*/
function lowerGammaSeries( a, z, initialValue ) {
	var result;
	var s;
 
	initialValue = initialValue || 0.0;
	s = lowerIncompleteGammaSeries( a, z );
	result = sumSeries( s, {
		'initialValue': initialValue
	});
	return result;
}
 
 
// EXPORTS //
 
module.exports = lowerGammaSeries;