All files / stats/base/dists/binomial/quantile/lib main.js

100% Statements 144/144
100% Branches 24/24
100% Functions 1/1
100% Lines 144/144

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 1452x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 4029x 4029x 4029x 4029x 4029x 4029x 4029x 4029x 4029x 4029x 4029x 4029x 4029x 4029x 4029x 4029x 4029x 4029x 4009x 4029x 21x 21x 4029x 3x 3x 4029x 74x 74x 3931x 3931x 3931x 3931x 4029x 1963x 4029x 1968x 1968x 3931x 3931x 3931x 3931x 3931x 4029x 3644x 3644x 287x 4029x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isNonNegativeInteger = require( '@stdlib/math/base/assert/is-nonnegative-integer' );
var erfcinv = require( '@stdlib/math/base/special/erfcinv' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var round = require( '@stdlib/math/base/special/round' );
var sqrt = require( '@stdlib/math/base/special/sqrt' );
var cdf = require( '@stdlib/stats/base/dists/binomial/cdf' );
var SQRT2 = require( '@stdlib/constants/float64/sqrt-two' );
var PINF = require( '@stdlib/constants/float64/pinf' );
var searchLeft = require( './search_left.js' );
var searchRight = require( './search_right.js' );
 
 
// MAIN //
 
/**
* Evaluates the quantile function for a binomial distribution with number of trials `n` and success probability `p` at a probability `r`.
*
* @param {Probability} r - input value
* @param {NonNegativeInteger} n - number of trials
* @param {Probability} p  - success probability
* @returns {NonNegativeInteger} evaluated quantile function
*
* @example
* var y = quantile( 0.4, 20, 0.2 );
* // returns 3
*
* @example
* var y = quantile( 0.8, 20, 0.2 );
* // returns 5
*
* @example
* var y = quantile( 0.5, 10, 0.4 );
* // returns 4
*
* @example
* var y = quantile( 0.0, 10, 0.4 );
* // returns 0
*
* @example
* var y = quantile( 1.0, 10, 0.4 );
* // returns 10
*
* @example
* var y = quantile( NaN, 20, 0.5 );
* // returns NaN
*
* @example
* var y = quantile( 0.2, NaN, 0.5 );
* // returns NaN
*
* @example
* var y = quantile( 0.2, 20, NaN );
* // returns NaN
*
* @example
* var y = quantile( 0.5, 1.5, 0.5 );
* // returns NaN
*
* @example
* var y = quantile( 0.5, -2.0, 0.5 );
* // returns NaN
*
* @example
* var y = quantile( 0.5, 20, -1.0 );
* // returns NaN
*
* @example
* var y = quantile( 0.5, 20, 1.5 );
* // returns NaN
*/
function quantile( r, n, p ) {
	var sigmaInv;
	var guess;
	var sigma;
	var corr;
	var mu;
	var x2;
	var x;
 
	if (
		isnan( r ) ||
		isnan( n ) ||
		isnan( p ) ||
		r < 0.0 ||
		r > 1.0 ||
		p < 0.0 ||
		p > 1.0 ||
		!isNonNegativeInteger( n ) ||
		n === PINF
	) {
		return NaN;
	}
	if ( r === 1.0 || p === 1.0 ) {
		return n;
	}
	if ( r === 0.0 || p === 0.0 || n === 0 ) {
		return 0.0;
	}
	// Cornish-Fisher expansion:
	mu = n * p;
	sigma = sqrt( n * p * ( 1.0-p ) );
	sigmaInv = 1.0 / sigma;
	if ( r < 0.5 ) {
		x = -erfcinv( 2.0 * r ) * SQRT2;
	} else {
		x = erfcinv( 2.0 * ( 1.0-r ) ) * SQRT2;
	}
	x2 = x * x;
 
	// Skewness correction:
	corr = x + ( sigmaInv * ( x2-1.0 ) / 6.0 );
	guess = round( mu + (sigma * corr) );
	if ( cdf( guess, n, p ) >= r ) {
		return searchLeft( guess, r, n, p );
	}
	return searchRight( guess, r, n, p );
}
 
 
// EXPORTS //
 
module.exports = quantile;