All files / ndarray/find/lib assign.js

52.04% Statements 89/171
100% Branches 1/1
0% Functions 0/1
52.04% Lines 89/171

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 1721x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                                                                                                                                                     1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isFunction = require( '@stdlib/assert/is-function' );
var isndarrayLike = require( '@stdlib/assert/is-ndarray-like' );
var hasOwnProp = require( '@stdlib/assert/has-own-property' );
var unaryReduceSubarrayBy = require( '@stdlib/ndarray/base/unary-reduce-subarray-by' );
var ndims = require( '@stdlib/ndarray/ndims' );
var base = require( '@stdlib/ndarray/base/find' );
var getDtype = require( '@stdlib/ndarray/dtype' );
var getShape = require( '@stdlib/ndarray/shape' );
var getOrder = require( '@stdlib/ndarray/base/order' );
var maybeBroadcastArray = require( '@stdlib/ndarray/base/maybe-broadcast-array' );
var broadcastScalar = require( '@stdlib/ndarray/base/broadcast-scalar' );
var zeroTo = require( '@stdlib/array/base/zero-to' );
var objectAssign = require( '@stdlib/object/assign' );
var format = require( '@stdlib/string/format' );
var DEFAULTS = require( './defaults.json' );
var validate = require( './validate.js' );
var getSentinelValue = require( './sentinel.js' );
 
 
// MAIN //
 
/**
* Finds the first elements which pass a test implemented by a predicate function along one or more ndarray dimensions and assigns results to a provided output ndarray.
*
* @param {ndarray} x - input ndarray
* @param {ndarray} out - output ndarray
* @param {Options} [options] - function options
* @param {IntegerArray} [options.dims] - list of dimensions over which to perform a reduction
* @param {*|ndarray} [options.sentinelValue] - sentinel value
* @param {Function} predicate - predicate function
* @param {*} [thisArg] - predicate function execution context
* @throws {TypeError} first argument must be an ndarray-like object
* @throws {TypeError} second argument must be an ndarray-like object
* @throws {TypeError} options argument must be an object
* @throws {TypeError} predicate argument must be a function
* @throws {Error} must provide valid options
* @returns {ndarray} output ndarray
*
* @example
* var isEven = require( '@stdlib/assert/is-even' ).isPrimitive;
* var array = require( '@stdlib/ndarray/array' );
* var empty = require( '@stdlib/ndarray/empty' );
*
* // Create an input ndarray:
* var x = array( [ [ [ 1.0, 2.0 ], [ 3.0, 4.0 ] ], [ [ 0.0, 6.0 ], [ 7.0, 8.0 ] ] ] );
* // returns <ndarray>
*
* // Create an output ndarray:
* var y = empty( [], {
*     'dtype': x.dtype
* });
*
* // Perform reduction:
* var out = assign( x, y, isEven );
* // returns <ndarray>
*
* var bool = ( out === y );
* // returns true
*
* var v = y.get();
* // returns 2.0
*/
function assign( x, out, options, predicate, thisArg ) {
	var sentinelValue;
	var nargs;
	var opts;
	var err;
	var flg;
	var ctx;
	var sv;
	var cb;
	var N;
	var o;

	nargs = arguments.length;
	if ( !isndarrayLike( x ) ) {
		throw new TypeError( format( 'invalid argument. First argument must be an ndarray-like object. Value: `%s`.', x ) );
	}
	if ( !isndarrayLike( out ) ) {
		throw new TypeError( format( 'invalid argument. Second argument must be an ndarray-like object. Value: `%s`.', out ) );
	}
	// Case: assign( x, out, predicate )
	if ( nargs < 4 ) {
		cb = options;
		if ( !isFunction( cb ) ) {
			throw new TypeError( format( 'invalid argument. Predicate argument must be a function. Value: `%s`.', cb ) );
		}
	}
	// Case: assign( x, out, options, predicate, thisArg )
	else if ( nargs > 4 ) {
		flg = true;
		o = options;
		cb = predicate;
		if ( !isFunction( cb ) ) {
			throw new TypeError( format( 'invalid argument. Predicate argument must be a function. Value: `%s`.', cb ) );
		}
		ctx = thisArg;
	}
	// Case: assign( x, out, predicate, thisArg )
	else if ( isFunction( options ) ) {
		cb = options;
		ctx = predicate;
	}
	// Case: assign( x, out, options, predicate )
	else if ( isFunction( predicate ) ) {
		flg = true;
		o = options;
		cb = predicate;
	}
	// Case: assign( x, out, ???, ??? )
	else {
		throw new TypeError( format( 'invalid argument. Predicate argument must be a function. Value: `%s`.', predicate ) );
	}

	N = ndims( x );

	// Validate options
	opts = objectAssign( {}, DEFAULTS );
	if ( flg ) {
		err = validate( opts, N, o );
		if ( err ) {
			throw err;
		}
	}
	// When a list of dimensions is not provided, reduce the entire input array across all dimensions...
	if ( opts.dims === null ) {
		opts.dims = zeroTo( N );
	}
	// If provided, use user-defined sentinelValue
	if ( hasOwnProp( opts, 'sentinelValue' ) ) {
		sentinelValue = opts.sentinelValue;
	} else {
		sentinelValue = getSentinelValue( getDtype( x ) );
	}
	// Broadcast sentinel value to match the output array shape:
	if ( isndarrayLike( sentinelValue ) ) {
		sv = maybeBroadcastArray( sentinelValue, getShape( out ) );
	} else {
		sv = broadcastScalar( sentinelValue, getDtype( x ), getShape( out ), getOrder( out ) ); // eslint-disable-line max-len
	}
	// Perform the reduction:
	unaryReduceSubarrayBy( base, [ x, out, sv ], opts.dims, cb, ctx );
	return out;
}
 
 
// EXPORTS //
 
module.exports = assign;